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Chapter 1 

INTRODUCTION 

When data are collected with reference to points or regions in space, it is unrealistic to 

assume independence among individual observations since values observed at one location or 

over one region may depend on those at nearby locations. To appropriately handle spatially 

correlated data, statisticians design spatial statistical models and their applications appear in a 

wide range of issue areas such as geography, meteorology, resource conservation, disease 

control, and crime studies. The popularity of spatial statistical models also has led theoretical 

econometricians and applied economists to explore spatial/strategic interaction as an important 

feature of social interaction models and spillover effect or network models. However, contrary to 

statisticians who treat the spatial process in the error term, econometricians tend to specify the 

spatial dependence in the mean component of the regression model. This difference may be 

attributed to the fact that spatial analysis in statistics is mainly conducted for mapping and 

prediction, whereas economists are more interested in drawing reliable inferences about a causal 

relationship in the presence of spatial correlation and identifying the impact of spatial 

dependence on the phenomenon of interest. In a historical point of view, the publication of 

Anselin’s (1988) influential book, Spatial Econometrics: Methods and Models, stimulated 

econometricians to have worked towards developing spatial models that are better tailored to the 

specific features of economics data. One of such efforts results in advancing spatial econometric 

methods for constructing spatial interaction models.  
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Spatial interaction models are referred to as “models that focus on flows between origins 

and destinations” (LeSage and Pace, 2008, p. 942; also see Sen and Smith, 1995). This type of 

flow data is often found in the studies of international trade flows, population migration, 

transportation, communications and information flow, network, and regional and interregional 

economic analysis. Conventionally, spatial interaction models include a distance variable as an 

attempt to remove the spatial correlation among sampled origin-destination (OD) pairs. 

However, spatial dependence may not properly be controlled for with a distance variable that 

measures the bilateral distance between each origin and destination (e.g., Porojan 2001; Lee and 

Pace, 2005). Upon recognizing the inadequacy of the distance variable, LeSage and Pace (2008) 

argue that flow data involves both an origin and a destination at the same time so that spatial 

dependence may arise from multiple sources. As a better tuned approach to handle spatial 

correlation among data that features a directional flow, LeSage and Pace extend the traditional 

spatial interaction model by including three spatial connectivity matrices that explicitly capture 

origin-based, destination-based, and origin-to-destination dependence among flow data.  

Nonetheless, LeSage and Pace’s methodological advance is directed at continuous 

dependent variables, and it is not readily applicable to binary or censored data. This dissertation 

aims to fill the gap by extending the spatial OD modeling technique to the limited dependent 

variable cases. It should be noted that, due to the non-linearity of regression models for limited 

dependent variables with spatial correlation, the commonly used maximum likelihood (ML) 

estimator is no longer appropriate. Therefore, this research adopts Bayesian procedures for 

model estimation. 

In Chapter 2, I extend the spatial OD model in order to accommodate flow data that 

represent binary choice outcomes. Data on interregional flows or interactions such as firms’ 



www.manaraa.com

 

3 

 

investment decisions, interregional collaboration, and contracts are often collected as 

dichotomous and they may exhibit spatial dependence. Chapter 2 proposes a spatial OD probit 

which incorporates the three spatial connectivity matrices advanced by LeSage and Pace in the 

regression model of the latent dependent variable. However, as McMillen (1992) observes, it is 

difficult to adapt ML estimators to probit models with spatial correlation. In order to avoid the 

inconsistency issue associated with an ML estimator, I show that a spatial OD probit model may 

be estimated with a Bayesian method that is similar to what LeSage and Pace (2009) discuss in 

their study. In addition, I suggest an effective way to deal with self-directed OD pairs. Due to the 

structure of weight matrices for OD flow samples, intra-regional or self-directed pairs are 

included in the estimation by construction, even though they are of no interest to the researcher. 

For example, in studies of international conflict, it would be not sensible to include observations 

on civil conflict because the causes of the former are different from those of the latter. This 

research introduces an elimination approach that entirely removes self-directed pairs from the 

estimation procedure, while preserving the correlation structure embodied by the weight 

matrices.   

As an application, the spatial OD probit model is employed to investigate militarized 

interstate dispute (MID) initiations, observations of which can be viewed as a “directional flow” 

from the initiator to the target. Using a cross-section of 26 European countries drawn from the 

period leading up to WWII, I find empirical evidence for two types of spatial correlation: target-

based and initiator-to-target based. Compared to a benchmark model that ignores spatial 

correlation, the effect estimates of the explanatory variables noticeably change under the spatial 

OD probit model, suggesting the inadequacy of models that do not account for spatial correlation 

in this context.  
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In Chapter 3, I focus on another type of limited dependent variable measured as censored 

data. When flow data are generated with an underlying spatial process but censored, a standard 

spatial OD model is less useful. To tackle this issue, I propose a Tobit version of the spatial OD 

model. For the purposes of this chapter, I use bilateral trade data where censoring occurs at zero 

and where trade flows between origins and destinations are expected to be correlated with those 

of neighboring OD pairs. To be consistent with the previous studies of international trade, I use 

the conventional log-linear specification of the gravity model but augment it with spatial OD 

modeling technique.  

Due to its simple estimation and interpretation, the gravity equation in its log-linearized 

form has served as the workhorse in applied trade studies. However, trade data often contain zero 

flows, so they are not suitable for direct log transformation as required by log-linearized gravity 

models. Accordingly, handling zero-valued observations is an important issue in empirical trade 

studies. Following Eaton and Tamura (1994)’s approach to zero trade values, my proposed 

model is based on an assumption that there exists a threshold level for trade data. When trade 

volume reaches the threshold, the model records the observed trade value. Otherwise, it is treated 

as unobserved and latent.  

I term this improved technique a spatial OD threshold Tobit model. It avoids leaving out 

zero-valued observations while utilizing the log-linearized gravity model. In addition, it 

addresses multiple forms of spatial correlation embedded in “directional” trade flows in a similar 

fashion as LeSage and Pace’s spatial OD modeling. Not surprisingly, the addition of the 

threshold parameter as well as the spatial process in model specification complicates the 

estimation of the model. This complication is resolved by employing a Bayesian approach. It is 
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also worth noting that this model can accommodate other situations where the censored point is 

positive or where the dependent variable does not need to be log-transformed. 

As an illustration, the proposed spatial OD threshold Tobit model is applied to export 

flows among 32 Asian countries in 1990. The empirical results point to all three types of spatial 

dependence: exporter-based, importer-based, and exporter-to-importer based. After considering 

the multiple sources of spatial correlation in bilateral trade flows, I find that the impact of 

conventional trade variables changes in a noticeable way, calling into question the assumption of 

spatial independence when modeling trade flows.  

In sum, given that flow data or data on spatial or strategic interactions often represent 

binary outcomes or censored values, this dissertation has extended the existing spatial OD 

modeling technique and proposed models and estimation strategies to deal with the 

aforementioned types of limited dependent variables in the context of spatial correlation among 

the observations. The findings of this dissertation confirm Anselin’s (1988) argument that, like 

temporal dependence, spatial dependence may generate inconsistent estimates if not properly 

handled.   
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Chapter 2 

A SPATIAL ORIGIN-DESTINATION MODEL OF CORRELATES OF WORLD WAR II 

IN EUROPE 

2.1   Abstract 

This study examines cases in which interregional flows are measured as binary choice 

outcomes and proposes a spatial origin-destination (OD) probit. The use of Bayesian modeling 

avoids inconsistent estimates, which result from maximum likelihood estimation when spatially 

lagged terms of the dependent variable are included on the right-hand side of the equation. 

Drawing on three spatial dependence matrices, which are similar to those used by LeSage and 

Pace (2008), capturing origin-based, destination-based, and origin-to-destination-based 

dependence, the spatial OD probit model corrects for the spatial autocorrelation among binary 

observations of directional flows. The model is used to analyze militarized interstate dispute 

(MID) initiation, which features directed dyads as the unit of analysis and a binary measure as 

the dependent variable. Upon fitting the spatial OD probit model to the conflict initiation data for 

26 European countries for the years 1933-1941, this study finds empirical evidence for two types 

of spatial dependence: target-based and initiator-to-target based. After further taking the dyadic 

dependence into consideration, this study reveals that the effects of conventional political 

variables such as capabilities change in a notable way, suggesting that models that do not 

account for spatial dependence are inadequate.   
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2.2   Introduction 

Spatial econometrics, as a subfield of econometrics, focuses on “the treatment of spatial 

interaction (spatial autocorrelation) and spatial structure (spatial heterogeneity) in regression 

models for cross-sectional and panel data” (Anselin, 2003). In particular, the focus on spatial 

interaction has generated much appreciation among both applied and theoretical 

econometricians, as manifested by applications of spatial econometric models in an increasingly 

wide range of fields in economics. At an early stage of this development, econometric models 

that explicitly incorporated spatial interaction were limited to regional studies. However, recent 

empirical studies employing spatial econometric methods have been found in such diverse areas 

as international trade, public economics, labor economics and agricultural economics. As the 

scope of spatial econometrics widens, advances are being made towards developing more 

sophisticated model specifications, which are tuned to particular data structures. 

The progress of spatial econometrics also provides innovative ideas and useful 

methodological tools for researchers in other social sciences where the potential problem of 

spatial dependence looms large. Over the past ten years, political scientists, among others, have 

employed various technical and statistical methods to address the spatial dependence embedded 

in their data structure (e.g., Gleditsch and Ward, 2000; Ward and Gleditsch, 2002; Gartzke and 

Gleditsch, 2008). Nonetheless, most of the methods they use suffer from an inability to directly 

model the spatial dependence process, and consequently are incapable of specifying the 

distinctive impact of spatial dependence on the phenomenon under scrutiny and the effect of 

each of the causal factors apart from spatial interaction.   
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Ward and Gleditsch (2008), for example, introduce two spatial econometric models in the 

areas of democracy and voting: the spatial autoregressive (SAR) model and the spatial error 

(SER) model. Since their spatial econometric models reduce estimation bias by allowing 

observations that are spatially connected to borrow useful information from each other, they are 

instrumental in finding new empirical evidence related to democracy and voting behavior. 

Despite this important advance over previous strategies for handling spatial dependence in these 

particular areas, no spatial econometric model has ever been applied to the study of interstate 

conflict, a prominent research area in political science (Neumayer and Plumper, 2010, p. 147).  

This research gap may be attributed to two methodological issues. First, the conventional 

SAR model assumes that the dependent variable is continuous and relies mainly on maximum 

likelihood for estimation; this assumption creates a problem for international conflict scholars 

who view their outcome variables as a binary choice (e.g., war versus peace). Second, it is 

challenging to model spatial dependence in an analysis where the units are pairs of countries (or 

dyads in the terminology of political scientists), given that spatial dependence could come from 

either side of a dyad and probably even go beyond that (Gartzke and Gleditsch, 2008). For the 

majority of quantitative studies on interstate conflict, the dyad is the favored unit of analysis due 

to the belief that this level of analysis better reflects the strategic interactions between two states 

(e.g., Bremer, 1992; Bennett and Stam, 2000). On the other hand, as King (2001, p. 498) aptly 

points out, “dyadic observations in international conflict data have complex dependence 

structures.”   

Not surprisingly, economists have long sought not only to examine the causes, economic 

or not, of international conflict and its consequences, but also to develop economic measures and 
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policy tools to contain conflicts. Early works by Pigou (1921) and Robbins (1937) looked into 

international economic interdependence and the risk of war. Isard (1994) and Polachek (1994) 

first formalized “peace economics” as a research field. In recent years, war and peace have 

become a more active research area; its relationships with economic factors, such as international 

trade (e.g., Polachek, 1997), business cycles (e.g., Hess and Orphanides, 2001a; Blomberg and 

Hess, 2002), growth (e.g., Koubi, 2005), and state fiscal capacity and taxation (e.g., Besley and 

Persson, 2008), have been vigorously investigated by economists.  

This study extends the spatial origin-destination modeling (hereafter referred to as spatial 

OD model) proposed by LeSage and Pace (2008) to probit regression, and introduces a Bayesian 

approach to its estimation. This extended model, after necessary tuning to accommodate the 

unique features of dyadic interstate conflict data, is then used to explore the impact of spatial 

dependence on the propensity for militarized interstate dispute (MID) initiation among dyads. 

Also, this approach to conflict data enables us to examine the performance of conflict-inducing 

factors in the presence of spatial effect terms in a probit regression model. In doing so, this 

research attempts to increase the knowledge of dyadic conflict studies in the disciplines of 

economics and political science. 

The rest of this study is organized as follows. Section 2.3 reviews the original spatial OD 

model. Section 2.4 discusses the technical difficulties in applying the spatial OD model to binary 

dependent variables. A Bayesian approach to probit spatial OD regression model is presented in 

Section 2.5. In Section 2.6, the proposed spatial OD probit model is applied to investigate 

conflict initiation among European countries during the WWII period. Section 2.7 reports the 
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empirical results and discusses their implications, and Section 2.8 offers some concluding 

remarks. 

2.3   Spatial Econometric Modeling of Origin-Destination Flows: the Continuous Case 

2.3.1   Structure of Origin-Destination Models 

Since OD flows are directional, one pair of regions will yield two observations where 

their origin and destination status can be reversed. Therefore, if   regions are considered under a 

spatial OD model, the number of observations becomes     . Here, an   by   square matrix   

is used to denote interregional flows from each of the   origin regions to each of the   

destination regions, with each column recording a specific origin’s outflows to each of the   

potential destination regions and each row corresponding to the inflows toward a given 

destination from each of the   potential origins. Specifically, the OD flow matrix is organized as 

follows: 

(

     

     

 
     

     

     

 
     

 
 
 
 

     

     

 
     

) 

It is worth noting that the diagonal elements of this OD flow matrix represent intra-regional 

rather than inter-regional flows. They are often set to zero when the objective is to model inter-

regional flows (e.g., Fischer et al., 2006).
1
 To reflect an “origin-centric ordering” of OD flows 

                                                 
1
 In the study of state-level population migration flows, LeSage and Pace (2008, p. 960) create a separate model for 

flows on the main diagonal of the flow matrix by setting all elements of the covariates corresponding to the diagonal 

of the flow matrix equal to zero, thus “prevent[ing] these variables from entering the interregional migration flow 

model” while including additional explanatory variables for the intra-regional model. 
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(LeSage and Pace, 2008, p. 944), the matrix   is then vectorized into an N by 1 matrix   (i.e., 

        ).2  

In a typical spatial interaction model, where each region is treated as an observation, 

explanatory variables that represent k characteristics for each of the n regions are expressed in an 

n by k matrix,  . In keeping with the origin-centric arrangement of  , this   matrix is stacked n 

times in a spatial OD model to form an N by k matrix which tallies destination characteristics and 

is thereby denoted   . LeSage and Pace note that    and   are related via a Kronecker product 

operation so that       ⨂    , where    is an n by 1 vector of ones (p. 945). Similarly,  ⨂    

would produce another N by k matrix,    which contains origin characteristics. In the matrix   , 

the characteristics of each region are repeated n times before being stacked together, thus 

resulting in a matrix with dimensions of N by k.  

In the same fashion as would occur by stacking the matrix   to form the vector  , an N 

by 1 vector   recording the distances from origins to destinations is formed by stacking the n 

columns of an n by n OD distance matrix   into a variable vector.  

So far, the resulting regression model assumes the following form: 

                                                                    ,                                               

where   is the parameter associated with the constant term vector   ;    and    are the k by 1 

parameter vectors associated with the covariate matrices    and   , respectively;   is the scalar 

parameter measuring the effect of the distance variable  ; and   is an N by 1 vector of errors 

under the assumption that               .  

                                                 
2
 The vec operator converts a matrix into a column vector by stacking its columns in sequence. 
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Equation (2.1) represents a spatial OD model under the assumption of independent 

observations. It should be noted that although the distance between regions in each dyad is still 

included as an explanatory variable in a spatial OD model, it is considered to be inadequate for 

capturing spatial dependence between dyads. The inadequacy has urged econometricians to 

review the potential sources of dependence and thus explore more appropriate ways to model 

them. LeSage and Pace’s (2008) study sheds new light on this exploration. Based on an omitted 

variables argument, LeSage and Pace demonstrate that if unobserved forces or missing 

covariates exert a similar impact on “neighboring” observations, including spatial lags of the 

dependent variable would be useful in capturing dependence among OD pairs. Furthermore, they 

argue that when it comes to the forms of dependence in the case of OD flows, “neighboring 

regions include neighbors to the origin, neighbors to the destination, and perhaps a link between 

neighbors of the origin and neighbors of the destination” (p. 947).  

2.3.1.1   Multiple Sources of Spatial Dependence in Origin-Destination Models  

To bring the idea of capturing spatial dependence using spatial lags of the dependent 

variable into line with the possible types of dependence that could exist among OD pairs, LeSage 

and Pace (2008) extend the spatial OD model above by introducing spatial lags defined through 

three spatial connectivity structures. To be exact, their spatial OD model is expressed as:  

                                                                .                  

Equation (2.2) includes three spatial weight matrices:   ,   , and   . They are built upon the 

more familiar row-standardized, n by n first-order contiguity weight matrix  , but are adapted to 

the neighboring relationships unique to OD flows. 



www.manaraa.com

 

14 

 

First,    equals   ⨂ . This   by   weight matrix embodies the notion that factors 

causing flows from an origin to a destination may bring about similar flows to nearby 

destinations; accordingly, the spatial lag     attempts to pick up this type of destination-based 

dependence by the use of average flows from one origin to the neighbors of a given destination. 

Using similar reasoning, a second   by   weight matrix     ⨂   is developed in order to 

reflect origin-based dependence and the spatial lag     measures an average of flows into one 

destination from the neighborhood of an origin. 

Furthermore, the idea of removing origin-based and destination-based dependence in 

sequence via the product                    motivates the introduction of a third 

dependence structure.
3
 Termed as origin-to-destination dependence, this third type is modeled by 

the spatial weight matrix     ⨂ . Since    represents a second-order connectivity 

between the neighborhood of an origin and the neighborhood of a destination, the spatial 

lag     indicates an average of flows from the neighborhood of an origin to the neighborhood 

of a destination. In light of the relationship among the three spatial parameters implied by the 

product term described above, LeSage and Pace (2008) consider both restricted and unrestricted 

models. With the restriction imposed that         , Equation (2.2) yields a “successive 

spatial filtering” (p. 955). However, when this restriction is relaxed, Equation (2.2) represents a 

more generalized model specification for spatial OD modeling. The model comparison in 

LeSage and Pace (2008) indicates that the generalized model specification outperforms all other 

alternative models, including the one subject to the restriction of         . 

2.3.1.2   Estimation of Spatial Origin-Destination Models 

                                                 
3
 On p. 954, LeSage and Pace (2008) demonstrate the third type of spatial connectivity by expanding the product 

term,                                                           . The 

authors also note that the order of this operation does not affect the result. 
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It is important to note that Equation (2.2) is subject to endogeneity problems due to the 

inclusion of spatial lags. To make this point, it will suffice to show that in general, 

                                          .
4
 This endogeneity problem is 

potentially worse with multiple spatial lags. Hence, OLS estimates of the Equation (2.2) would 

be inconsistent in most cases.
5
 A commonly used estimation method is maximum likelihood. 

The spatial OD model in Equation (2.2) implies the reduced form equation: 

                                          

                                                         .                                                          

Letting               ,        
    

      and                       , the 

notation can be simplified: 

                                                                     .                                                               

The log likelihood function for this model up to an irrelevant constant is: 

                                                
 

 
           

 

   
                                        

where            and     refers to the determinant of the matrix  . 

2.3.2   Strengths and Limitations of the Original Spatial Origin-Destination Model  

                                                 
4
               (                             ) 

                                                                                          
5
 Lee (2002) shows that under certain regularity conditions, the OLS estimates of a SAR model can be consistent in 

large group interactions.  
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The validity of the conventional spatial interaction models, which include a geographical 

distance variable as a way of treating spatial dependence in interregional flows, has long been 

questioned. Furthermore, the fact that each observation of OD flows involves two regions (or 

locations) may also engender dependence among the observations in multiple ways. Indeed, 

LeSage and Pace (2008, p. 942) concur with Griffith and Jones’ insight (1980, p. 190) that flows 

stemming from an origin are “enhanced or diminished in accordance with the propensity of 

emissiveness of its neighboring origin locations” whereas flows towards a destination are 

“enhanced or diminished in accordance with the propensity of attractiveness of its neighboring 

destination locations.” In line with this reasoning, LeSage and Pace (2008) propose a revised 

model with three spatial weight matrices (as shown in (2.2) above), which are designed to 

capture origin-based, destination-based, and origin-to-destination-based dependence among OD 

flow pairs, and their modeling is in a fashion compliant with the standard SAR model. They also 

provide an illustration of the spatial OD model, using data on state-level population migration 

flows, and find evidence for origin-, destination- and origin-to-destination-based dependence in 

the population migration flows between U.S. states.
6
  

Since LeSage and Pace’s spatial OD model effectively deals with different types of 

potential dependence in data featuring a directional flow, it can be applied to the realm of 

international conflict where spatial dependence among dyadic pairs of countries is prevalent. In a 

dyadic analysis of interstate war,
7
 an incidence of war can be viewed as a directional “flow” 

from the initiator country (i.e., the origin) to the target country (i.e., the destination). However, in 

practice, the spatial OD model is not readily applicable to a dyadic analysis of international 

conflict owing to the binary nature of the data. Originally, spatial OD models were set up to cope 

                                                 
6
 In their sample, LeSage and Pace include only the 48 contiguous states and the District of Columbia. 

7
 In this study, the terms “war” and “conflict” are used interchangeably. 
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with continuous outcome variables that are generated by spatially dependent processes; 

accordingly, maximum likelihood estimation (MLE) was considered the most appropriate 

method for estimating the model parameters. Unfortunately, the binary nature of dependent 

variables in conflict data renders MLE computationally ineffective. When dealing with binary 

dependent variables, researchers normally follow a latent variable approach by transforming the 

nonlinear relationship into a linear one with a link function. 

In a similar manner, this study turns to a probit link, and extends LeSage and Pace’s 

spatial OD model by incorporating the spatial weight structures into a standard probit model. 

However, an ML estimator becomes unfit, once terms of “lagged” spatial effects are introduced 

into the probit model. For this reason, a Bayesian approach is employed instead to estimate the 

new model using a probit link. The next two sections offer the technical details used to bridge the 

spatial OD modeling with a probit regression model, as well as the Bayesian procedure exploited 

to estimate parameters of interest. 

2.4   Building a Spatial OD Probit Model 

When investigating interregional flows or interactions, the researcher often needs to 

model dependent variables that represent a binary choice outcome. For instance, interregional 

collaboration behavior, mobility, and firms’ investment decisions are all binary choices that may 

exhibit spatial dependence. In these scenarios, it would be impractical to apply the spatial OD 

model designed for continuous outcome variables.  

In applied research, probit models are frequently used for handling binary dependent 

variables. However, standard probit models do not account for spatial dependence. Given its 
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potential applications, efforts have been attempted to develop a probit estimator for spatially 

correlated binary data. For example, McMillen (1992) observes that “[p]robit and other limited 

dependent variable models are neglected in the spatial autocorrelation literature”; he ascribes this 

neglect to “the difficulty of adapting maximum-likelihood estimators to models with dependent 

observations.” In his study, McMillen presents a probit version of the SAR model and proposes 

an EM algorithm for estimation, but he also notes that this estimation procedure “is not easy.” 

One of the drawbacks of McMillen’s EM algorithm is that it does not readily provide consistent 

covariance matrix estimates (p. 347). Drawing on work by Albert and Chib (1993), LeSage 

(2000) proposes a Bayesian approach to SAR probit models which demonstrates several 

advantages over the method set forth by McMillen.   

Like a standard probit, the spatial OD probit model proposed in this study relies on the 

use of a latent variable    to model the binary dependent variable of interest. The unobserved, 

latent variable    is then modeled using the spatial OD flow regression relation:
8
   

                           
       

                                                

Furthermore, without loss of generality,    is assumed to be equal to one (i.e.,             ) for 

identification. The only difference between the setup of this spatial OD probit and a standard 

probit is the addition of spatial lag terms to the regression of the latent variable.  

Equation (2.6) can be written in its reduced form as follows:  

                                                                                                                                    

                                                 
8
 Similar ideas of model building based on lags of the latent variable can also be found in dynamic probit models 

(e.g., Davutyan and Parke, 1995; Dueker, 1999). 
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where    and   are defined in the same way as in Equation (2.4) above. The latent variable    is 

linked to the observed binary variable   through the following measurement equation: 

     , if   
    

     , if   
                                                                

The covariance matrix   (             )          implies that the error terms are 

heteroskedastic as well as autocorrelated. As McMillen points out, “[h]eteroskedasticity can be 

relatively benign in a model with a continuous dependent variable, but it is a serious problem in a 

discrete dependent variable model (p. 339).” Due to the heteroskedasticity innate to model 

specification, an ML estimator for a spatial probit suffers from inconsistency. This problem 

becomes clear when one inspects the marginal probabilities of a spatial probit model. 

Specifically, in a spatial OD probit model, the marginal probabilities are: 

              [   ]    [   ]      

where [   ]  is defined to be the ith row of the inverse matrix    , or  

                                                          (   
[   ]

 
  

  
)                                                      

using the marginal distribution from a multivariate normal with variance-covariance matrix 

       . 

In expression (2.9),    stands for the square root of the ith diagonal element of the 

variance-covariance matrix and    follows a standard normal. As       for all  , this 

structurally built-in heteroskedasticity implies that the ML estimator for standard probit would be 
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inconsistent in the spatial model case. Moreover, the fact that the error terms      are correlated 

aggravates the inappropriateness of applying the standard probit estimator in a spatial probit. 

To circumvent the aforementioned difficulties, LeSage (2000) proposes a Bayesian 

MCMC procedure to estimate the SAR probit model. In order to generate the posterior 

distributions for the parameters of interest, the MCMC sampler combines Albert and Chib’s 

(1993) data augmentation approach, which introduces N latent variables as parameters that can 

be estimated using Gibbs sampling, with the Metropolis-Hastings-within-Gibbs method. Gelfand 

and Smith (1990) show that Gibbs sampling produces a Markov Chain whose stationary 

distribution is the true joint distribution of the parameters. For this reason, this Bayesian 

estimation procedure is regarded as more desirable. LeSage’s approach provides a general 

framework for estimating probit models that explicitly incorporate spatial dependence in model 

specification. 

This study adapts the Bayesian procedure suggested by LeSage to a family of models 

involving spatial OD flows, among which the SAR probit model can be viewed, from a technical 

standpoint, as a special case. Technically speaking, this adaption rests on the inclusion of two 

additional spatial lag parameters into LeSage’s Bayesian SAR probit model, similar to the OD 

model of LeSage and Pace (2008), although the three weight matrices present in the spatial OD 

probit model have quite different denotations from that of the weight matrix applied in the SAR 

probit model. In principle, once the conditional distribution of the latent observations is derived, 

the problem at hand reduces to a spatial regression model which is of a more typical form for 

simulation, and from there, the conditional distributions for all model parameters can be derived 

sequentially.  
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2.5   Bayesian Modeling 

In a spatial OD probit model, spatial interdependence induces a truncated multivariate 

normal distribution (TMVN) for the latent parameters   as shown in (2.10). 

                                                                                                                             

Hence, the conditional prior density of     takes the form: 

                             ( 
 

 
                 )                                        

where, as noted earlier,     is defined to be the determinant of the matrix  .  

To conduct a Bayesian analysis, one starts by assigning reasonable prior distributions for 

the parameters, and then, given the data, derives the corresponding posterior distribution for each 

parameter. This study follows the common practice in Bayesian spatial modeling by allowing   

to assume the form of a multivariate normal distribution, and then applying diffuse priors on the 

spatial lag parameters,   ,   , and    (LeSage and Pace 2009, p. 221). To be specific, 

                                                 ,             

                                                ,                                                                     

where   denotes the number of coefficient parameters. 

Given the prior densities specified above, it follows from Bayes’ Theorem that,  
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Due to the fact that given   ,  ,   ,   , and    become redundant in defining the conditional 

density of  , along with the assumed independence among  ,   ,   , and   , we have 

                                                                                  

Here,      and      are used to distinguish between prior and posterior densities. 

2.5.1  The Conditional Posterior Distribution of   

The conditional posterior density of  , given   ,   ,   , and   , is proportional to the 

joint posterior density (2.14) with   ,   ,   , and    held constant.  

                      
                  

                
                      

                           

                              ( 
 

 
                 )      

 

     ( 
 

 
      )                    

where the last step follows by substituting in (2.11) and (2.12).  

After some algebraic manipulation, this can be simplified to read as follows:   

                  
 

     { 
 

 
[                          ]} 

                      , and                                  

and is proportional to  
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                          { 
 

 
                        }                                                         

which is the kernel of a multivariate normal distribution. Thus, we can infer that the conditional 

posterior distribution of   is:  

                              , 

and this is equivalent to  

                                                                                                                          

2.5.2   The Conditional Posterior Distributions of the  ’s 

Similarly, the conditional posteriors for  ’s can be derived. Using the same argument as 

in (2.15), together with (2.11) and (2.12), we can write,  

                                            

and this implies that 

                                    ( 
 

 
                 ) 

       

where            denotes an indicator function that takes the value 1 if    is in the open 

interval       . This restriction is imposed because of the model assumptions and computational 
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feasibility.
9
 As independence is presumed among  ,   ,   , and   , the conditional posterior 

distributions for    and    take the same form as (2.18). However, unlike the conditional 

posterior for   derived above, the conditional posterior distributions for the  ’s do not have a 

known form, and thus cannot be sampled directly. For this reason, this study turns to a 

Metropolis-Hastings algorithm for sampling. 

2.5.3   Sampling of    

For brevity, this study will, from this point on, express the latent parameters 

as                   , with            denoting the mean and           

representing the variance-covariance matrix. As illustrated earlier,                    subject 

to a vector of inequality restrictions        . Here,   and   depend on the observed values 

of 0 and 1 for the elements of  ; thus, individual elements of   may be    and individual 

elements of   may be    given that   
  is only truncated on one side. The fact that the 

covariance matrix   is not diagonal implies that the marginal distributions for individual 

elements of    are not univariate truncated normal, thus ruling out the option of sampling from a 

sequence of univariate truncated normal distributions in order to obtain simulations for the 

individual elements   
 .  

To circumvent this problem, LeSage and Pace (2009) adopt the approach set forth by 

Geweke (1991) and generate simulations for individual elements   
  relying on the conditional 

distribution of   
  given all other elements of    (denoted as    

 ). Showing that sampling from 

                                                 
9
 Being an autoregressive coefficient,       is required to be less than 1 for the model to be stable. Moreover, LeSage 

and Pace (2009, p. 128) note that a feasible range for the spatial parameter is       ⁄       ⁄  , where      and 

     are the minimum and maximum eigenvalues of the spatial weight matrix. In this application, the three spatial 

weight matrices all have a minimum eigenvalue of -1 and a maximum eigenvalue of 1. 
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                    subject to inequality restrictions         is equivalent to 

constructing samples from an N-variate normal distribution            subject to the inequality 

restrictions      , where          and         , Geweke works with the precision 

matrix   (i.e., the inverse of the variance-covariance matrix) of the truncated multivariate 

normal distribution from which samples of     need to be drawn. Geweke establishes that 

                , where              , with     being the ith row of   excluding the ith 

element and      the scalar in the ith row and column. For the spatial OD probit model, the 

precision matrix is          . 

LeSage and Pace (2009) apply the result stated above to sample individual    from a 

normal conditional distribution, and then acquire samples of     using the transformation    

      . More formally, the normal conditional distribution of    takes the following form: 

                   

   (    )
    

                                                             

and    is sampled from a standard normal subject to the following truncation criteria: 

(         )   ⁄                  ⁄  

      and           for      

                                                          and       for                                                 

A Gibbs sampling procedure is taken to produce the vector  , where in each iteration the 

most recent samples of    ,   ,…,     ,     ,     , …,    are used for simulating   . Constructed 

this way, the vector  , in conjunction with the relation           , will give the vector   , 

which is then used to simulate draws from the conditional posterior distributions of the other 
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model parameters. It should be noted that Geweke’s Gibbs sampler implementation for the 

truncated multivariate normal distribution sometimes shows slow convergence (Rodriguez-Yam, 

Davis and Scharf, 2004).
10

 And this problem becomes more acute when sampling a high-

dimensional truncated multivariate normal with non-diagonal covariance matrix. 

To improve convergence, this paper employs the Geweke-Hajivassiliou-Keane (GHK) 

multivariate normal simulator (Geweke, 1991; Hajivassiliou, 1990; and Keane, 1994), a 

technique that samples recursively from truncated univariate normals after a Cholesky 

transformation. The GHK algorithm works as follows.
11

  

Instead of drawing from the original distribution of the latent variable, 

                                                  s.t.              , 

I draw a random vector 

                   s.t.                                

where   denotes the lower triangular Cholesky factor of  ,      . 

Due to the triangular structure of  , the restrictions on   are recursive. Specifically, 

                                 s.t.            
           

      , 

                                 s.t.             
                    

              , 

                                                 
10

 Rodriguez-Yam, Davis and Scharf (2004) propose an efficient Gibbs sampler to the truncated multivariate normal 

distribution; but, their implementation is developed with a view to application to constrained linear regressions and 

therefore is not easily adopted in cases of high-dimensional truncated multivariate normals. 
11

 Börsch-Supan and Hajivassiliou (1993) provide a detailed description of this recursive conditioning method.  
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and for        , 

                                 s.t.             
  ∑    

   
                 

  ∑    
   
           . 

Thus     can be sampled sequentially from univariate truncated normals. The simulated vector   

and the relation              will give the desired truncated random vector   .                                 

2.5.4   Implementing MCMC Sampling 

Assigning arbitrary initial values for the parameters (denoted by the superscript    ), this 

study sequentially samples the conditional distributions for the model parameters following the 

steps sketched below: 

1.  ( |  
      

      
         ), which is a multivariate normal distribution with mean and 

variance defined in (2.16). Label the sampled vector   as     . 

2.  (  | 
      

      
         ), which can be acquired by means of a Metropolis-Hastings 

sampler based on a normal jumping density, along with rejection sampling in order to 

confine    to the        interval. Label this updated value   
   

. 

3.  (  | 
      

      
         ), which applies the same Metropolis-Hastings algorithm as in 

step (2). The newly updated value for    is used when making a draw for   . 

4.  (  |       
      

         ), which is similar to steps (2) and (3), except that now the 

updated values for both    and    are employed. 

5.  (  |       
      

      
   ), which requires draws from the left- or right-truncated normal 

distributions defined in section 2.5.3. 
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Then, return to step (1) and replace the initial values        
   

   
   

   
   

       with the updated 

values        
     

      
         . This process is repeated to obtain a large sample of draws that 

can be used to make valid inferences with respect to the model parameters. 

2.6   Spatial OD Probit Model of the Correlates of World War II in Europe 

As a way of illustrating the utility of the proposed spatial OD probit model, this section 

looks into the causes of interstate conflict in Europe during the period 1933-1941. 

2.6.1   Methodological Rationale for Spatial Modeling of Interstate Conflict 

Due to its devastating destructiveness to human lives and socio-economic development, 

interstate war has been a very active research topic for both political scientists and economists. 

Not surprisingly, the former group tends to focus more on the causal factors of war (e.g., Russett 

and Oneal, 2001; Choi and James, 2005; Gartzke and Gleditsch, 2008), while the latter is more 

interested in examining the relationships between war and economic fundamentals (e.g., Besley 

and Persson, 2007 and 2008, on state fiscal policy and taxation; Hess and Orphanides, 1995 and 

2001a, and Blomberg and Hess, 2002, on business cycles). Still, some economists are also 

inclined to investigate issues such as the impact of democratic institutions and election cycles on 

the propensity for war (e.g., Hess and Orphanides, 2001b). 

It is important to note that most conflict scholars tend to treat each incident of interstate 

war as a separate and isolated event without giving due consideration to the interdependence that 

may exist among incidents of war. However, the assumption of independence among a series of 

war incidents is unfounded. Arguably, once a country is already at war, its ability and 

willingness to get involved in another one will be more or less affected. More generally, as a 
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directional development between two countries, a country’s war decisions are conditional on the 

conflict behavior of other “connected” pairs of countries (Gartzke and Gleditsch, 2008). Gartzke 

and Gleditsch (2008) treat alliance ties as one of the important linkages for conflicts within 

dyads and concede that “many other sources of extra-dyadic ties and dependence other than 

alliance links are possible” (p. 32). Clearly, of the possible sources of dependence between 

interstate conflicts, the most fundamental link should arise from geographical proximity. After 

all, many alliances were also formed out of geo-strategic concerns.   

Interstate war involves a strategic interaction between at least two states. For this reason, 

many political scientists prefer to use the dyad (i.e., a pair of states) as the unit of analysis. This 

level of analysis is considered to better reflect the mutual influence of states within the setting of 

war, and therefore to produce a more balanced assessment of the causes of interstate conflict. 

Furthermore, conflict scholars began to notice the importance of examining the initiation of war 

over involvement, since the former is a more useful concept in pinpointing the origin of interstate 

conflict. Hence, the notion of directed dyads, which differentiates between aggressor and victim, 

was introduced, allowing researchers to test directional hypotheses pertaining to the differential 

characteristics of potential initiator and target (Bennett and Stam, 2000). For instance, the use of 

directed dyads enables researchers to test contending theories such as democratic peace, 

economic interdependence, and policy preference similarity. The advantage of directed dyadic 

level analyses is well substantiated by Ray (2001, p. 374): “virtually the entire difference 

between the conflict proneness of jointly democratic pairs of states and other pairs might be 

accounted for by the aggressiveness or assertiveness of democratic states against autocratic 

states. Or, that difference could be produced entirely by the aggressiveness of autocratic states. 
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Only directed dyadic level analyses can reveal where in between those extremes the ‘real world’ 

is located.”  

The directed dyadic research design has contributed to advancing the scientific 

knowledge of interstate conflict: characteristics of identified initiator and target are both essential 

for explaining conflict behavior. More importantly, this research design brings to light several 

potential sources of spatial dependence among conflict observations. Although conflict scholars 

include a geographical distance variable as a way of capturing the geopolitical nature of 

interstate war, it may, to some extent, even be considered a control for spatial dependence.
12

 The 

effectiveness of this treatment of spatial dependence has, however, long been challenged, urging 

researchers to design better spatial econometric models (Anselin 1988).  

Just like temporal dependence in time series data, spatial dependence will, if not handled 

properly, cause an estimator to be biased, and consequently lead to incorrect inferences with 

respect to model parameters. The consequences of ignoring this dimension of dependence in 

conflict studies are potentially more detrimental, given that geographical proximity is regarded 

as an explanatory variable of interest. In fact, political scientists have become increasingly aware 

of the neglect of spatial dependence in conflict studies. For example, Gleditsch and Ward (2000) 

introduce the concept of spatial dependence in to the study of war and examine the impact of 

spatial clustering on the relationship between democratization and war. Ward and Gleditsch 

(2002) incorporate the advances made in the implementation of conditional models for 

categorical variables in the statistical analysis of spatial patterns; they estimate an autologistic 

                                                 
12

 Hegre, Oneal and Russett (2009, p. 766) assert the necessity of including geographic distance besides contiguity 

in the conflict equation, acknowledging that the logic of including distance in the gravity model of trade, where 

distance is “a broad concept that may include anything that either facilitates or hinders the movement of goods and 

services,” also applies to the conflict equation. 
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model of democracy and international war using pseudolikelihood and MCMC techniques. Beck, 

Gleditsch and Beardsley (2006) illustrate the SAR model using a simple social requisites model 

that explains democracy by GDP per capita and the SER model using an example that probes the 

political determinants of dyadic trade. They argue that the SAR model usually should be 

preferred to the SER model, and experiment with two different ways of designing the weight 

matrix   based on political economy notions of distance. In their recent book, An Introduction 

to Spatial Regression Models in the Social Sciences, Ward and Gleditsch (2008) utilize a SAR 

model to examine the distribution of democracy, voting outcomes, and the political determinants 

of trade flows. These aforementioned studies represent some notable efforts by political 

scientists to bring advances in spatial dependence modeling to bear on international studies and 

war studies. However, the simplicity of these models renders them less useful in modeling spatial 

interdependence in dyadic conflict data.  

Gartzke and Gleditsch (2008) were the first to consider the application of spatial 

dependence in international conflict in a dyadic setting. They utilized “third order” and “fourth 

order” alliances, as well as a measure of a third state’s location between two disputants in a 

conflict, to model the dependence-generating process. Their empirical results highlight the 

presence of potentially complex spatial dependency relations in dyadic conflict data, although 

the adequacy of the two types of linkages they use to measure spatial dependence warrants 

further scrutiny. It is worth noting that their construct of “inbetweenness” does not distinguish 

between a dyad having two or more large inbetweenness ratios in relation to other dyads that are 

involved in disputes, and a dyad with only one large inbetweeness score; this is because they 

only “consider the maximum inbetweenness score for each dyad” (p. 21). From a policy point of 

view, identifying the causal process underlying the initiation of war should be more informative 
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than just that of war involvement.  Also, the approach in Gartzke and Gleditsch (2008) neglects 

to consider the intricacy of the types of spatial dependence involved in war initiation. 

The solutions suggested for addressing spatial dependence in existing conflict studies 

share a common drawback. The spatial connectivity they depict does not conceptualize war as a 

directional strategic behavior between two states; it thereby fails to take into account all the 

possible sources of spatial dependence underlying the behavioral decision to wage war. It is 

plausible that the propensity for war initiation between a dyad is influenced by their geographic 

proximity, either through one party or both, to an ongoing nearby conflict and that this 

connectivity can be further shaped by a disputant’s initiator or target status in a potential 

militarized conflict. 

If we treat an observation of directed dyadic war data as a directional flow from the 

aggressor to the victim, then recent developments in spatial econometrics should help shed light 

on tackling the spatial interdependence among observations of war initiation. The rationale for 

spatial OD modeling of interregional flows can be applied to the study of international conflict. 

The likelihood of the initiation of war by a potential aggressor may be enhanced or diminished 

by its aggressive behavior towards the neighboring states of the potential target (i.e., target-based 

spatial dependence). The likelihood of being attacked by a potential aggressor may be enhanced 

or diminished by the belligerent behavior of the aggressor’s neighboring states towards the 

potential victim (i.e., initiator-based dependence). Quite likely, the propensity for initiating a 

conflict is also affected by the aggressive behavior exhibited by the neighbors of the potential 

attacker towards the neighbors of the potential target (i.e., initiator-to-target-based dependence).  
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Therefore, a more comprehensive treatment of spatial dependence in directed dyads of 

conflict initiation requires modeling the linkages that exist between dyads in relation to the status 

of each dyad member in a conflict. In keeping with this argument, this study applies a spatial OD 

probit model to analyze the initiation of MIDs among 26 European countries during the WWII 

period. The empirical findings indicate that by directly modeling multiple sources of spatial 

dependence among dyads, as represented by the neighboring relationships that are constructed 

through the side of initiator, the side of target, as well as both sides, the spatial OD probit model 

reveals how war initiations are correlated in space; as a consequence, this study obtains estimates 

which more reliably reflect the impact of political factors contributing to the likelihood of war 

initiation. 

2.6.2   Research Design 

The initiation of conflict among 26 European countries during the WWII period is 

analyzed in the context of a spatial OD probit model. The choice of the sample data is based on 

the following two considerations: 1) conflict initiations were relatively more frequent and 

concentrated in this region during the time span under scrutiny; 2) this data selection is 

consistent with Beck, Gleditsch and Beardsley’s (2006, p. 37) remark that a European sample 

includes “‘high-quality’ observations that we are relatively confident in.” A list of sampled 

countries is reported in Appendix I.  

2.6.2.1   Data and Modeling 

In this subsection, this study discusses data sources and describes how the data are 

structured to fit the specification of a spatial OD probit model; this model embodies spatial 
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connectivity terms representing initiator (i.e., origin)-centric and target (i.e., destination)-centric 

dependence as well as a spatial link highlighting concurrent neighboring relationships across 

dyads between both initiators and targets. 

The illustrative application under consideration focuses on the militarized interstate 

disputes among European countries during the period from 1933 to 1941, and investigates how 

spatial dependence involved in the dispute initiations in Europe affects the estimation of classical 

war regression models. The cutoffs for the study period are selected with a view towards two 

historical events, which define the study of the nine year period as being more homogenous and 

relatively plagued with warfare. To be precise, on January 30, 1933, Adolf Hitler was appointed 

the Chancellor of Germany, which signified a turning point in European diplomatic history, and 

on December 11, 1941, Hitler declared war on the United States. The involvement of the U.S. 

marked a new phase in the War and made it truly a world war in scale. In addition, data 

collection with respect to the explanatory variables used in the analysis is more available and 

reliable for European countries. In a word, this study believes that the period chosen is quite 

suitable for analyzing spatial dependence among dispute initiations. 

All the data used in this analysis are retrieved from the Expected Utility Generation and 

Data Management Program (EUGene) Version 3.204.
13

 With the directed dyad-year being the 

unit of analysis, the time frame examined in this study, and the region specified to be Europe, 

EUGene outputs 6,030 cases from the Correlates of War (COW) Militarized Interstate Disputes 

(MID) data with Side A noted as initiator and Side B noted as target. The MID data is used as the 

basis for creating the dependent variable. EUGene is also utilized to generate data for four 

                                                 
13

 EUGene is a free software, but copyrighted. It can be downloaded at http://www.eugenesoftware.org/. EUGene 

generates datasets for quantitative analysis of international relations, with country-year, directed-dyad-year, non-

directed-dyad-year, and directed-dispute-dyad-year as the unit of analysis.  

http://www.eugenesoftware.org/
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independent variables: (1) democracy and (2) national material capabilities for the initiator and 

the target states, respectively, (3) a measure of geographical distance within each dyad, and (4) 

alliance ties within dyads. Like many studies in spatial econometrics, this study aggregates the 

data over the time span in question to obtain a cross-national dataset, yielding 756 observations 

in total. Among the 756 directed dyads contained in the sample, many did not experience a MID 

during the study period.  

To avoid the issue of possible reverse causality, values of the year 1932 are recorded for 

the explanatory variables.
14

 As can be seen from the OD flow matrix presented in section 2.3.1, a 

self-directed pair is conventionally included for each region in a sample of interregional flows 

(i.e., those on the diagonal of the flow matrix) in order to utilize the model structure associated 

with spatial OD modeling. Since this study is only concerned with militarized interstate disputes, 

it is natural to code the initiation variable as zero for the self-directed dyads.
15

 In addition, it 

should be noted that data is unavailable for Demark and Norway for the year 1941. After 

removing these two countries from the sample, the cross-sectional data covers 26 European 

countries and consists of 676 directed dyads (including 26 self-directed pairs).  

2.6.2.2   Definition of Variables and Weight Matrices 

The dependent variable, cwinit, measures whether there was an initiation of a militarized 

interstate dispute (MID) by the first state (i.e., State A) in a directed-dyad. A MID is “a set of 

                                                 
14

 As a robustness check, I also tried two other measures of the explanatory variables. One measure sets the variables 

at their respective mid-year value of the time span studied (i.e., year 1937’s value). The other measure records the 

average value of each variable over the nine year interval for the conflict-free pairs and takes the values of the year 

previous to the first conflict initiation for each conflict dyad. ML estimation results are quite robust across all three 

measures of the covariates. Since the lagged value approach is more justifiable from a technical point of view, it is 

chosen for the empirical analysis in the paper. 
15

 These dyads will be handled such that this choice is irrelevant. A more detailed discussion on operationalization 

issues regarding these dyads will be presented in Section 2.6.2.3.  
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interactions between or among states involving threats to use military force, displays of military 

force, or actual uses of military force” (Gochman and Maoz, 1984, p. 587; see also Jones, 

Bremer and Singer, 1996). It is coded as “1” if the first country (i.e., initiator) of a dyad initiated 

at least one MID against the second country (i.e., target) over the nine year period; otherwise, it 

is coded “0”.
16

  

This study employs four independent variables: democracy, national material capabilities, 

geographic distance, and alliance. Because the main purpose of this study is to illustrate 

modeling spatial dependence among binary observations of directional flows rather than to 

present an exhaustive model of interstate conflict and given the specific historical period under 

study, other potential explanatory variables such as economic interdependence are not included, 

which also helps save computation time. polity1 and polity2 record, respectively, the democracy 

score for the two members of a dyad (i.e., polity1 for initiator and polity2 for target). The data 

were originally compiled by the Polity IV project, and are now available as a user dataset in 

EUGene. The Polity dataset measures and aggregates five different aspects of democratic 

institutions in each country: (1) competitiveness of participation, (2) regulation of participation, 

(3) competitiveness of executive recruitment, (4) openness of executive recruitment and (5) 

constraints on the executive. The averaged democracy score runs from -10 to 10, ranging from 

the most autocratic (the least democratic) to the most democratic. Missing Polity IV values are 

replaced by Polity III values whenever the latter are available. The democratic peace proposition 

maintains that democratic countries in a dyad are less war prone due to the high levels of 

institutional constraints on the war decisions of their political leaders (see Russett and Oneal, 

2001; Choi and James, 2005). In this study, the directed dyadic data structure allows us to 

                                                 
16

 In Appendix II, dyads that experienced more than one initiation are listed. 
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analyze separately how the regime type of a state affects its war behavior with respect to its role 

as a MID initiator or target.  

cap1 and cap2 measure the national material capabilities of each state in a dyad. These 

indicators are introduced to capture how an increase or a decrease in the national capabilities of 

the initiator or target state influences the likelihood of a MID initiation. Each state’s national 

capabilities are assessed over six components as follows: total population, urban population, iron 

and steel production, energy consumption, military personnel, and military expenditure. More 

specifically, a composite index is computed by summing all the scores for each of the six 

capability components in a given year, converting each state’s absolute component to a share of 

the international system, and then averaging across the 6 components (see Singer, Bremer, and 

Stuckey, 1972; Singer, 1987).  

The distance variable measures the distance in miles between capitals, adjusted for 

contiguity. The default option in the data management program of EUGene relies on the distance 

calculation method proposed in Bueno de Mesquita’s (1981) book, The War Trap. 

Conventionally, distance is included to test the hypothesis of geopolitics that the geographic 

location of countries is a key factor in determining foreign policy. Later on, it is suggested that 

the distance measure may also help capture the spatial dependence among war data (Hegre, 

Oneal and Russett, 2009), although its sufficiency has been called into question.  

In the COW dataset, alliance is originally coded as a categorical variable, with 

1 defense pact, 2 neutrality, 3 entente, and 4 no agreement. In this study, I follow the 

convention in the literature and convert it into a binary measure by combining the first three 

categories. Therefore, “1” denotes that dyad partners were allied and “0” otherwise. 
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In spatial econometrics, the physical distance between observations serves as a basis for 

constructing the weight matrix   which directly models the spatial connectivity structure. 

Although socio-economic distances are sometimes considered in specifying the spatial 

interaction structure in social studies, Gleditsch (2007) acutely points out that “[a]lthough states 

other than geographic neighbors can be important, we can identify the most important 

relationships between states by examining dependence determined by geographical proximity.” 

Here, neighboring states are first identified, with           being coded as “1” if the distance 

between the two members of a dyad is zero; it is coded as “0” otherwise.
17

 Based on this 

“neighbors” information, the weight matrix   is then row standardized to have row sums of one. 

Through the Kronecker product operations which were described earlier, three particular weight 

matrices   ,   , and    are produced to reflect initiator-, target- and initiator-to-target-based 

dependence among dyads. Specifying the weight matrices based on geographic distances is also 

sensible when examining the spatial connectivity of conflict dyads. As Gartzke and Gleditsch 

(2008, p. 18) assert, being a determinant of dyadic interaction, “distance should also matter for 

the degree of dependence on other dyads.” Nonetheless, it is worth noting that in the spatial 

econometrics literature, a number of ways other than contiguity have been used, in reference to 

the researcher’s knowledge of, or theory about, the diffusiveness of spatial interaction, for 

defining neighboring relations and thus the weight matrix (e.g., LeSage and Pace, 2004).
18

 Of 

                                                 
17

 Beck, Gleditsch and Beardsley (2006) define countries as connected if they are within 500 km of one another, a 

distance equivalent to 311 miles. Given that this study focuses on European countries, a shorter cutoff criterion of 

212 miles was also applied in determining neighbors. The empirical results were similar to what are reported here. 
18

 To alleviate the concern that the observed spatial connectivity among conflict initiation may only be a reflection 

of underlying alliance ties, I also constructed weight matrices based on alliance relationships and ran two other 

models: one model replaces the distance-based weight matrices with alliance-based weight matrices and the other 

includes both sets of weight matrices. It turns out that the model with alliance-based weight matrices provides a 

worse fit whereas the model employed in the paper provides the same fit as does the more inclusive model. These 

estimation results support the notion that strategic concerns trump political concerns. 
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course, different designs of the weight matrix affect estimation results differently. The row-

standardized weight matrix   used in the present application is included in Appendix III. 

In addition, the data for the explanatory variables are further arranged so as to comply 

with the notations developed in Section 2.3. Given that the explanatory variables contain both 

initiator and target characteristics, the distance between a pair, and the alliance ties between dyad 

partners, a 676 by 2 matrix that has polity2 and cap2 as its columns is partitioned out and labeled 

   to represent attributes of target countries only. Similarly, a second 676 by 2 matrix that 

includes polity1 and cap1 is denoted   , standing for initiator countries’ characteristics. 

2.6.2.3   Handling the Self-Directed Dyads 

2.6.2.3.1  A Dummy Variable Approach 

In keeping with the structure of the weight matrix  , self-directed pairs are included in 

the data by construction. However, the dependent variable for these self-directed pairs assumes a 

value of zero because only interstate conflicts are considered. Accordingly, the zero values of 

these observations are different in nature from those observed for non-conflict dyads. If we 

ignore this difference and treat the self-directed pairs the same as other dyads, the estimation 

results would be biased. 

To resolve this problem, a dummy variable is utilized to keep the observations for self-

directed dyads from biasing the estimation without changing the structure of the model. To be 

exact,  
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                                                         ,                         

where   is an N by 1 binary vector with its elements taking the value “1” for self-directed dyads 

and “0” otherwise. The term        does not appear before the distance variable   because 

distances for self-directed pairs are recorded as zero in the first place. And it is the same with the 

alliance dummy  , which is coded as zero for self-directed dyads. Equation (2.19) can be 

simplified as  

                                                                         

                                                                                                                                      

where                                              . 

The above Hadamard products perform the operations of setting the values of all regressors, both 

conventional and spatial lags, to zero for the self-directed observations while maintaining intact 

the spatial structures.   

2.6.2.3.2   An Elimination Approach 

Admittedly, assigning zero values to the regressors for self-directed pairs is a double-

edged tactic. It avoids the downside associated with the often-used method of only setting intra-

regional flows to zero, while keeping the observed values of explanatory variables, a practice 

which might bias the estimated effects of the explanatory variables. However, with both the 

dependent and independent variables being recorded as zero for the self-directed pairs, this 

approach invites the possibility of underestimating the standard errors of the model.  
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Given that this study focuses on the spatial dependence among interstate conflicts and 

given that civil (intrastate) conflicts and interstate conflicts are believed to operate under 

different mechanisms, a more sensible way to deal with self-directed dyads in this context is to 

pull them out of the estimation procedure entirely, while preserving the primary dependence 

structure embodied in the weight matrices. To this end, this study makes use of a ‘selection’ 

matrix to take out of the weight matrices,   ,   , and   , respectively, the rows and columns 

corresponding to self-directed pairs, so the altered weight matrices are conformable to the data 

structure after those self-directed observations are extracted.  

Before proceeding with the empirical analysis, this study first illustrates this “selection” 

process with a relatively simplified example which involves only 4 countries. Suppose the 

locations of the 4 countries are graphically represented as follows: 

 

Country1 

 Country3 Country2 

 

  

Country4 

Based on the first-order contiguity relationship, the row-standardized weight matrix   for this 

simple example becomes: 

(

 
   

   
 

   
   

 
   

   
 

   
 

 
 

     
     

) 
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and accordingly the origin-centric weight matrix     ⨂   is identified as
19

  

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              

               
               

                
             

             

             

             

            
           
           
           

                  
                  
                  
                 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

where the blank cells are all zeros. 

To eliminate the role of the self-directed dyads from the estimation, the 1
st
, 6

th
, 11

th
 and 

16
th

 rows and columns of    need to be removed. This can be accomplished by pre-multiplying 

   by a “selection” matrix   and post-multiplying    by the transpose of  , with   denoting a 

12 by 16 sparse matrix as shown below: 

                                                 
19

 To save space, this study demonstrates only the operations on the    matrix. But the same operations can be 

applied to the    and    matrices as well. 
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This selection operation is performed on    and    as well. Naturally, the altered weight 

matrices need to be row standardized once again to reflect the exclusion of neighboring 

relationships with self-directed pairs. 

This alteration of the weight matrices sustains the rationale for origin-centric, destination-

centric, and origin-to-destination dependence structures; however, it relieves the clumsiness of 

the original weight matrices,   ,    and    when self-directed dyads are inadvertently 

included due to construction rather than because they are of interest to the researcher. It should 

be noted that the elimination approach is preferred to the dummy variable approach, since the 

latter often leads to underestimating standard errors. Therefore, this study applies the elimination 

approach to the self-directed dyads in the illustrative example of international conflict and makes 

Bayesian inferences accordingly. The new model is given by 

                          
            

            
                                 

with renormalized matrices   
 ,   

 , and   
 . 
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2.6.3   Modified Moran I test and Spatial Dependence in the Limited Variable Case 

In spatial studies, it is common practice to perform a spatial dependence test before 

implementing a spatial regression analysis. One widely used test is the Moran I test. To 

determine if a variable is distributed in a nonrandom spatial pattern, the Moran I statistic 

examines the spatial correlation of residuals. Nonetheless, a caveat of this statistic is the 

assumption of a continuous dependent variable, which is not satisfied in the case considered in 

this study.  

Lin and Zhang (2007) propose a modified Moran I test for non-continuous cases wherein 

deviance residuals, rather than regression residuals, are examined for checking spatial 

autocorrelation among observations. Based on established statistical literature, which 

demonstrates that deviance residuals of loglinear models are asymptotically normal (see Agresti, 

1990), Lin and Zhang show that the Moran I based on the log-likelihood (deviance) residuals of 

generalized linear models is analogous to the Moran I based on linear regression residuals. Their 

deviance residual Moran I test is implemented in four steps as follows: 1) in the model-fitting 

process, estimate the parameters of explanatory variables, 2) compute the deviance residual 

Moran I statistic,  

    
∑ ∑    (      ̅ )(      ̅ )

 
   

 
   

[∑ (      ̅ )
  

     ] [∑ ∑    
 
   

 
   ]

 

where the deviance residual      takes the place of    in the conventional Moran I; 3) compute the 

mean and variance of    ; and 4) calculate the p value of     relying on the asymptotic normality 

assumption (p. 297). This study employs this variation of the Moran I test only as an exploratory 
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tool. Significant test statistics would further motivate the necessity of using a spatial OD probit 

model.  

The modified Moran I test is applied to the deviance residuals from a standard probit with 

the weight matrix considered, in turn, being   ,    and    so as to flag any of the three 

possible forms of spatial dependence. Specifically, when the weight matrix is specified as   , 

the test statistic has a p-value of 5.128e-16, which signals target (destination)-based dependence. 

While the weight matrix takes the format of   , the test statistic reports a p-value of 0.2275. 

And the Moran I statistic holds a p-value of 0.5998 when    is alternatively considered to be 

the weight matrix in the test. Although the test results only suggest the existence of target-centric 

dependency relations, it should be kept in mind that Moran I test normally checks for spatial 

correlation among singletons and it tends to over count the average linkages represented by the 

   matrix. Hence, the test may not easily pick up the spatial connectivity among dyadic 

observations arising from this type of dual neighboring relationship. 

2.6.4   Further Exploratory Data Analysis     

As an additional exploratory step, this study adds all the three spatial lag terms,    , 

    and    , simultaneously to the standard probit, but still relies on the standard ML 

estimator for estimation. While this estimator suffers from an inconsistency problem as discussed 

earlier, preliminary estimation results from this regression may be somewhat informative. But it 

should be noted that the model estimated this way is no longer the same as (2.6) in that spatial 

lags in   rather than    are used. The coefficient on     is, as hinted at by the Moran I tests 

above, significant at the 0.001 level; however the coefficient of     turns out to be significant 
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at the 0.01 level as well. This result should not be too surprising in light of Moran I’s potential 

limitations in handling the unique structure of   . 

Columns 2 and 3 in TABLE 2.1 present estimated results using standard probit estimators. 

While Column 2 does not include spatial lags, Column 3 does. The spatial coefficient estimates 

displayed in Column 3 are indicative of the presence of spatial dependence in the conflict data 

examined in this study.
20

 The positive coefficient on     seems to suggest that a state’s decision 

to attack a target is positively related to its conflict initiation behavior relative to the neighboring 

countries of the intended target. This relationship in conflict behavior may arise out of logistic 

needs, strategic considerations, or the mere intention of reinforcing its position in the region by 

bringing more territory under its control.  

Insignificant as it is, the negative sign of the coefficient for     hints that states are less 

likely to assault their potential target when their neighboring state is engaged in a conflict with 

the same target. A disincentive to getting into other states’ spheres of influence appears to offer a 

plausible explanation for this negative association among conflict initiations. The negative 

coefficient associated with     alludes to a reverse correlation between a state’s conflict 

initiation and its neighbors’ assaults on the neighbors of its latent target. This dampening effect 

on the outbreak of conflict may be accounted for by the potential originator’s concern with its 

own domestic stability and a reluctance to get involved in an already unstable situation. From the 

perspective of a potential initiator, waging a war against a target which shares a border with the 

state(s) assaulted by the neighbor(s) of the initiator may mean further complicating the existing 

chaos. For instance, Gleditsch (2007) finds that conflicts, civil or interstate, in neighboring 

                                                 
20

 It should be noted that we should read these estimation results with caution because they are still biased. That is, 

the estimator is a standard probit model instead of a spatial OD probit model. 



www.manaraa.com

 

47 

 

countries tend to increase a country’s proneness to civil war. In line with this reasoning, concerns 

about maintaining political stability within the home territory should lower the incentive for the 

potential originator to set off the conflict. For one thing, handling refugee flows created by an 

ongoing conflict in a neighboring country may deplete a potential initiator’s available resources. 

More importantly, it is unwise for a state to drag itself into a new war if that state is not ready to 

pool all its resources for the war effort. In a similar vein, Levy (1982) contends that war-

weariness may inhibit war initiation behavior by other countries. This effect may be more salient 

for states within the vicinity of either an ongoing war or one concluded not long ago. 

Geographical proximity allows neighboring states to be aware of the devastating forces of war. 

Overall, the preliminary tests discussed so far seem to lend some support for the possibility of 

spatial dependence in conflict initiation. 

2.7   Spatial OD Probit Estimated with a MCMC Sampler 

As discussed in Section 2.3, in order to obtain consistent estimates for the proposed 

spatial OD probit model, a Bayesian approach is more appropriate. Since the rationale for the 

Bayesian method and the sampling procedure have already been explained in earlier sections, 

this study now focuses on the specifics pertaining to sampling the spatial lag parameters    

(       ), and then presents the empirical findings. 

For MCMC simulation, initial values need to be assigned to parameters in order to start 

the simulation process. This study uses zeros as the starting values for parameters of the 

explanatory variables and the spatial lagged terms. As    is supposed to be within the interval of 

      , this study follows LeSage and Pace’s (2009) approach by employing a normal 

distribution for the proposal density along with rejection sampling to confine the simulated 
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values of    to the desired range. The proposed value of   
 
 is deemed as a random deviate from 

the current value of   
  with the random deviation drawn from a standard normal distribution and 

adjusted by a tuning parameter m. Precisely, this procedure can be expressed as follows: 

       
    

                                                                        

The reason for tuning the proposed values is to allow the Metropolis-Hastings sampling 

procedure to cover the entire conditional distribution rather than to get stuck in a low probability 

area. By monitoring the acceptance rates of the Metropolis-Hastings procedure, this study sets   

at 1/20 and the resultant acceptance rates for all   ’s are around 40%.
21

 

2.7.1   Estimation Results from the MCMC Sampler 

(TABLE 2.1 about here) 

60,000 iterations were run and the first 10,000 were discarded as burn-in. Following the 

conventional practice in MCMC simulations, a 95% credibility interval together with the 

posterior mean and standard deviation are reported in Appendix IV. Bayesian estimates 

including a p-value (which evaluates whether a coefficient is significantly different from zero 

(LeSage and Pace, 2009, p. 292)) are presented in Column 4 of TABLE 2.1 alongside with the ML 

estimates in Columns 2 and 3. It should be noted that the Bayesian p-value is held as being 

comparable to the conventional p-value associated with the asymptotic t-statistic (LeSage and 

Pace, 2009; Gelman et al., 1995). Column 4 displays estimated results with self-directed dyads 

removed (i.e., the elimination approach is applied). As noted earlier, the elimination approach 

                                                 
21

 LeSage and Pace (2009, p. 137) suggest the use of a tuning parameter that results in an acceptance rate between 

40 and 60 percent. 
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should be more preferable in handling unnecessary self-directed pairs. The MCMC simulation 

results for the spatial OD probit show that in the context of conflict initiation, the propensity for 

starting a dispute in one dyad is influenced by the dispute onsets in other related dyads, even 

when the conventional political factors of democracy, national capabilities, geographic distance 

and alliance are controlled in a model of directed dyadic conflict.  

To be specific, the spatial coefficients    and    are both statistically significant, with 

the former taking a positive sign and the latter being negative; while    turns out to be 

insignificant though negative (see Column 4). The positive sign of    suggests that states are 

more likely to attack the neighbors of their intended target as well. This positive correlation may 

be attributed to logistic and strategic concerns. The famous Maginot Line provides a good case in 

point. Due to the construction of this defense line, Germany was dissuaded from a direct attack 

on France, but invaded Belgium first in order to conquer France. As explained earlier, a negative 

   means that instigation of a conflict by the neighbor of a potential aggressor, with the neighbor 

of the intended target, tends to discourage the conflict behavior of the latent initiator. 

Inclusion of the three terms for dyadic dependence notably affects the estimated 

coefficients of political variables. Although neither of the two democracy variables shows 

statistical significance, it is interesting to note the change in the magnitude of estimated 

coefficient for polity1. Under a standard probit (i.e., Column 2), the coefficient that was 

estimated with the unrealistic assumption of independence between observations is -0.0045 for 

the initiator, polity1. However, once the spatial dependence is properly taken into account, 

polity1 shows no substantive effect as well and virtually assumes a coefficient of zero. In the 

context of the time span covered in this study, it is plausible that the regime type of a potential 
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initiator should not be relevant to its conflict initiation behavior, as for many countries security 

concerns unquestionably overwhelmed political concerns during that historical period.  

Both the initiator and target’s national capabilities are found to have a significant, 

positive influence on the likelihood of dispute initiation, although the power status of the initiator 

appears to have a relatively larger bearing than that of the target. In contrast to the standard 

probit case where independence is assumed among observations (i.e., Column 2), the 

discrepancy in the coefficient sizes of national capabilities is narrowed considerably in the 

spatial OD probit (see Column 4), with the estimate for cap1 being reduced by 35% and that of 

cap2 increased by 13%. These results imply that no matter whether it is from the potential 

aggressor or the target, a change of the power status quo tends to encourage an interstate dispute. 

It seems that conflict initiation behavior is either a result of strengthened power for the latent 

initiator, who is now better prepared to overwhelm or challenge the intended target, or due to an 

urge to contain the power growth of the target.  

With the addition of the spatial lag terms, distance still appears to be negatively 

correlated to dispute proneness. This is consistent with the existing literature that when countries 

are far apart, they are less likely to fight each other (Boulding,1963; Gleditsch, 2002). It is 

plausible that due to geopolitical or logistic reasons, two countries separated by a large distance 

are less subject to conflicts of interest. In terms of magnitude, the estimated coefficient for 

distance is considerably larger in the spatial OD probit (-0.0011) than in a non-spatial probit (-

0.0009). And alliance exhibits no statistical significance though it takes on a positive sign, 

indicating that alliance ties do not have an appreciable impact on the propensity for conflict 

initiation within dyads. This finding is consistent with previous dyadic analyses of the 
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relationship between alliance dyads and war dyads (Ostrom and Hoole, 1978; Bremer, 1992). If 

as the more traditional view sees it, alliances normally grow “out of expediency and reflect 

nothing deeper than a temporary need of two or more states to coordinate their actions against 

one or more other states” , then war between allies may not be expected to be either more or less 

frequent than between non-allied states (Bremer, 1992, p. 315). 

Overall, the multifaceted spatial dependence captured by the spatial OD probit model 

implies that the effects of explanatory variables also work through different channels.    

2.7.2   Marginal Effects in the Spatial OD Probit Model 

While attaining statistical significance is an essential factor in determining the relevance 

of independent variables, passing this milestone does not ensure that these variables have a 

meaningful influence over the dependent variable in a substantive sense.  In a probit model, to 

specifically determine the extent to which such explanatory variables influence the dependent 

variable, researchers should report the marginal effect that each independent variable exerts on 

the outcome variable in a percentage change term. Due to the non-linearity of the normal 

probability density in probit models, the marginal effect of an explanatory variable varies with 

the level of the variable itself. Thus, the mean value, or a particular observation of each regressor 

is often used when interpreting model estimates. Accordingly, the marginal effect is inferred as 

being the change in the probability of a given event occurring, which is associated with a change 

in the average or a particular level of an explanatory variable.  

In the spatial OD probit model, the marginal effects are more complicated, because a 

change in the value of an explanatory variable for the ith observation will not only affect the 
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current dyad, but its effect may also diffuse to other dyads. Part of the emitted effect will 

ultimately be routed back to the starting dyad, depending on the types of the dyadic dependency 

relations as well as on the strength of such relations. This implies that a full treatment of 

marginal effects should consider the direct impact on the current dyad in question and the 

indirect or spatial spillover impact on neighboring dyads via the three forms of dependence 

specified in the model.  

Moreover, the country-specific regressors have an origin-destination structure, defined 

above by Kronecker products with the common n by k matrix,  . Thus, a change in one country’s 

regressor immediately affects all dyads in which that country is either an origin or a destination, 

and then the effects are propagated through the spatial diffusion mechanism to other dyads. The 

only columns of   specific to each dyad rather than each country are the constant term, distance 

between countries in the dyad, and alliance.
22

 

Consider the linear model in (2.23). We redefine              
         

    

     
    , in order to rewrite the model as                 , similarly to (2.7). Let   

  

denote the binary row vector that selects the ith row of a subsequent conformable matrix or 

vector – i.e.,    is a vector with a unit in the ith element and zeros elsewhere. The ith observation 

of     is thus   
    , which we simplify hereafter as   

  with the convention that self-directed 

dyads are omitted. Recalling that      ⨂  and      ⨂   , we wish to examine the 

derivative 

                                                 
22

 Marginal effects of a change in distance are complicated by the fact that we adjust for contiguity. Such an 

adjustment means that distance is not a differentiable function of latitude and longitude. We do not consider these 

marginal effects. 
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  [  
    

      ]

  
  

   
        ⨂      

  
  

   
       ⨂      

  
                        

To simplify notation, let   
           , which is the ith column of the    by        

matrix        . Let   
  (    

        
 ), where     

  denotes the first   by   subvector of   
 , etc. 

Thus,   
        

   and we may write 

  [  
    

      ]

  
  

       
      ⨂      

  
  

       
     ⨂      

  
 

        
        

   
    

  
  

      
      

    

  
 

                                           
     

    
      

                                                                    

The last line follows from the derivative of a trace (see, e.g., Lütkepohl, 1996). This 

expression is an   by   matrix of partial derivatives, and the effect on   
  of changing a certain 

country-specific characteristic for a certain country is given by the element in the corresponding 

column and row, respectively. Such an effect could be written as  

  [  
    

      ]

    
 [  

     
    

      
 ]                                              

for country         and characteristic        . 

For the model given jointly by (2.8) and (2.23) with a probit link function, the marginal 

effect on the probability of conflict initiation in dyad i given a change in characteristic k of 

country j is given by 
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  [     
      ]

    
  (

  
       

√  
          

)
[  

     
    

      
 ]  

√  
          

                              

using the usual chain rule. These marginal effects are of course estimated by inserting estimates 

of   and  , of which    and    are subvectors. 

From these derivative matrices, scalar summaries for the whole system, along the lines of 

those proposed recently by LeSage and Thomas-Agnan (2012), may be created by averaging 

across all i and j. Such scalar summaries allow the calculation of both a direct effect (i.e., the 

effect of changing any country’s regressor on dyads involving that country) and a network or 

indirect effect (i.e., the effect on pairs not involving that country). Total effect is the sum of these 

two effects. For the national capabilities variable, which records a country’s proportion of the 

total system capabilities, this study reports the average marginal effects associated with a 1% 

increase of this regressor. The marginal impacts of polity are computed when the variable 

increases by one unit. TABLE 2.2 presents the marginal effect estimates for the country-specific 

regressors of the spatial OD probit model. 

(TABLE 2.2 about here) 

As shown in TABLE 2.2, enhanced power status will have a positive direct impact. 

Specifically, a 1% increase in the capability of a country (either potential initiator or target) 

increases the probability of conflict between that country and any other country by an average of 

2.148%. However, the network effect is estimated to be negative though smaller, providing 

evidence for the notion that two countries may become less prone to mutual conflict when facing 

a common threat. This subtlety cannot be picked up by a model with no spatial correlation. 

Overall, a 1% upsurge in capabilities will enhance the propensity for dispute initiation by 
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1.599%. This positive total effect reaffirms the realist perspective on balance of power that 

increased power status is likely to fuel interstate conflict, either by allowing a state to become 

more assertive or prompting neighboring countries to perceive it as an imminent danger. 

Consistent with the coefficient estimates, polity has an insignificant marginal impact on conflict 

initiation. A unit increase in the polity measure of a country reduces the probability of conflict 

for a dyad involving that country by 0.108% while this dampening effect is only about 0.105% 

across the whole system.  

2.7.3  Individual Marginal Effects in the Spatial OD Probit Model 

An interesting question may arise, “What would have been the implications if a certain 

condition had been changed for a particular country?” For example, suppose that Germany had 

not taken the road of militarization during the WWII period, but instead had maintained military 

capabilities similar to that of Sweden (as the two countries have about the same size of territory 

and Sweden’s cap level is around the median level of the sample). Then what would have been 

the impacts on all the sampled dyads and in particular, on those dyads that involve Germany as 

the potential initiator? This question can be answered by inspecting scalar summaries for 

individual origins which average the derivative matrices specified in (2.28) across i with j and k 

fixed.  

TABLE 2.3 shows the baseline probabilities estimated by the spatial OD probit model of a 

dispute initiated by Germany against each of the other sample countries. For illustration, we 

report the marginal impact of a small (1%) reduction in Germany’s capability using the formula 

derived in (2.28). We also report the forecast change in initiation propensity from lowering 
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Germany’s capability from the recorded value of 0.0700 at the time to the sample median level 

of 0.0061.  

The baseline probabilities range from a 5.4% probability that Germany would target 

Portugal to a 50.8% probability of targeting France. The marginal effects of a 1% decrease in 

Germany’s capability range from a moderate decrease of 1.3% (vs. Portugal) to a more 

substantial decrease of 4.9% (vs. the Soviet Union) in the initiation probability. On average, the 

decrease in the likelihood of dispute initiation is 3.7% for all pairs with conflict potentially 

originating with Germany, 2.23% for all pairs involving Germany, and 0.13% for the whole 

system. Under the counterfactual of lowering Germany’s capability to the level of sample 

median, the likelihood of dispute initiation by Germany would have fallen by 4.51% to 28.33%. 

To be more specific, a less power-thirsty Germany during WWII would have reduced its 

propensity for attacking France by 27.91% and for targeting Russia by 28.33%. On average, the 

decrease in initiation probability is 17.93% when Germany is the potential aggressor, 11.24% 

when Germany is involved at all, and 0.60% for the whole system. This reinforces the previous 

conclusion pertaining to the war-inducing effects of military power.  

(TABLE 2.3 about here) 

2.8   Conclusion 

Interstate conflict is a widely-studied subject among political scientists and economists. 

However, most existing quantitative research was conducted under the unrealistic assumption 

that each observation is spatially-independent. Fortunately, recent innovations in spatial 

econometrics can help researchers to investigate the possibility of spatial dependence in conflict 
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data. In fact, some recent studies employ spatial econometrics modeling, such as the SAR 

model,
23

 when looking into the causes of international conflict. Nevertheless, due to the 

constraints of model structures, existing research that explores the spatial dependence in conflict 

data is limited to certain cases where the unit of analysis is monadic, consisting of individual 

states. This state of affairs is less than satisfying because an interstate conflict is a phenomenon 

in which at least two parties are, by definition, involved. When leaving out one conflict 

participant or ignoring interaction between participants, empirical analysis is likely to produce 

biased estimates, and consequently to distort the understanding of the nature of interstate 

conflict. For these reasons, conflict scholars prefer the dyad as the unit of analysis to the monad. 

There are two kinds of dyadic analysis: non-directed dyads and directed dyads. While the former 

does not distinguish between aggressor and victim, the latter does. However, this level of 

analysis demands a more complex structure of connectivity to reflect the spatial dependence; this 

goes beyond what the traditional SAR model can handle. Due to this methodological difficulty, 

no previous study has attempted to directly model the spatial interdependence in dyadic conflict 

data.  

This study has extended LeSage and Pace’s (2008) spatial origin-destination modeling to 

cases with a binary dependent variable, and then applied the spatial OD probit model to dispute 

initiations among 26 European countries during the WWII period. As noted, by using a 

combination of three spatial connectivity matrices for origin-, destination-, and origin-to-

destination-based dependence, LeSage and Pace’s spatial OD model extended the traditional 

spatial model and addressed the spatial dependence in interregional flows. Their spatial OD 

model relied on MLE for estimation because the model’s dependent variable was a continuous 

                                                 
23

 The SAR model is preferred to the SER model because it directly models the dependence-generating process 

instead of treating it as a nuisance term. 



www.manaraa.com

 

58 

 

measure. This study proposes a probit version of LeSage and Pace’s spatial OD model where the 

dependent variable is dichotomous. Because a traditional ML estimator for the spatial OD probit 

model would suffer from inconsistency due to the inclusion of lagged terms of the dependent 

variable on the right-hand side of the equation, this study adopts a Bayesian simulation 

procedure for model estimation. When applied to conflict initiation data, the constructs of the 

three spatial connectivity matrices in the spatial OD probit model are intended to capture the 

dependence among conflict initiations arising from the initiator side, the target side and the 

initiator-to-target link.  

The empirical results from the spatial OD probit model of interstate dispute initiation 

indicate that spatial dependence exists between conflict initiations, and that this spatial 

relationship is more complex than the one specified in the existing literature. The positive, 

significant coefficient associated with target-centric dependence signifies that aggressors tend to 

attack the neighbors of their intended victim as well. This inviting effect of spatial dependence 

on dispute initiations may be accounted for by strategic and logistic needs. On the other hand, the 

initiator-to-target-based dependence exerts a negative impact on the propensity for a dispute. A 

potential originator tends to be discouraged from taking actions against its intended target if there 

is a conflict between the neighbor of the originator and the neighbor of the target. This negative 

association between conflict initiation behaviors may be explained by concerns about 

maintaining domestic stability or by a war-weariness effect. The coefficient estimate for the 

initiator-centric dependence assumes a negative sign but is statistically insignificant. The 

negative sign seems to suggest that countries restrain themselves from starting a dispute against 

the same target that their neighboring state preys on. This could be due to a tacit understanding 

of the existence of spheres of influence, which may not have been uncommon in WWII Europe. 
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However, the data used in this study offer insufficient empirical evidence to draw such a 

conclusion.  

In addition, the introduction of spatial correlation enables researchers to examine effects 

from spillovers of conflict throughout the system. For instance, the spillovers of national 

capabilities indicate that two countries in a dyad may be less bound to engaging in a conflict 

when facing a threat from a third country. Overall, the effect estimates of the spatial OD probit 

model suggest that increased power, whether it is related to an initiator or a target, is likely to 

heighten the chances of conflict in a dyad. However, geographical distance appears to suppress 

the outbreak of conflict, and alliances have no bearing on conflict initiation within dyads even 

after control for spatial dependence.   

In sum, the proposed spatial OD probit model takes into account the interdependence 

among directed dyads, and therefore is instrumental in producing more reliable estimates of 

conflict-inducing factors as well as a better understanding of the dynamics of interstate conflict 

behavior.  
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Appendix I 

List of Sample Countries 

U.K., Ireland, Netherlands, Belgium, Luxembourg, France, Switzerland, Spain, Portugal, 

Germany, Poland, Austria, Hungary, Czech, Italy, Albania, Yugoslavia, Greece, Bulgaria, 

Romania, Russia, Estonia, Latvia, Lithuania, Finland, Sweden. 

 

 

 

 

 

 

 

 

Appendix II 

List of Directed Dyads with More Than One Initiation Over 1933-1941 

 

  Initiator                     Target          Year of Initiation 

 

Switzerland         Germany              1939 

Switzerland         Germany              1940 

 

Germany          Belgium              1936 

Germany              Belgium              1939 

 

Germany                      Portugal                       1940 

Germany             Portugal                       1941 

 

Germany         Czech       1938 

Germany         Czech       1939 

 

Germany         Bulgaria       1940 

Germany         Bulgaria       1941 

 

Germany         Russia       1939 

Germany         Russia       1940 

 

Germany         Sweden       1939 

Germany         Sweden       1940 
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Germany         Sweden       1941 

 

Hungary         Czech       1938 

Hungary         Czech       1939 

 

Italy         UK        1937 

Italy        UK        1939  

 

Italy         France       1937 

Italy         France       1939 

Italy         France       1940 

 

Italy         Spain       1936 

Italy         Spain       1940 

 

Italy         Germany       1934 

Italy         Germany       1939 

 

Italy          Albania       1934 

Italy                             Albania       1939 

 

Romania         Hungary       1939 

Romania         Hungary       1941 

 

Russia         Poland       1938 

Russia         Poland       1939 

 

Russia         Bulgaria       1940 

Russia         Bulgaria       1941 

 

Russia         Estonia       1939 

Russia         Estonia       1940 

 

Russia         Latvia       1939 

Russia         Latvia       1940 
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Appendix III 

Weight Matrix   

 

 
 

 

 

 

 

GBR IRL NED BEL LUX FRA SUI ESP POR GER POL AUT HUN CZE ITA ALB YUG GRE BUL ROU RUS EST LAT LTU FIN SWE

GBR 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IRL 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NED 0 0 0 0.5 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BEL 0 0 0.25 0 0.25 0.25 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LUX 0 0 0 0.333 0 0.333 0 0 0 0.333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FRA 0 0 0 0.167 0.167 0 0.167 0.167 0 0.167 0 0 0 0 0.167 0 0 0 0 0 0 0 0 0 0 0

SUI 0 0 0 0 0 0.25 0 0 0 0.25 0 0.25 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0

ESP 0 0 0 0 0 0.5 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

POR 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GER 0 0 0.111 0.111 0.111 0.111 0.111 0 0 0 0.111 0.111 0 0.111 0 0 0 0 0 0 0 0 0 0.111 0 0

POL 0 0 0 0 0 0 0 0 0 0.167 0 0 0 0.167 0 0 0 0 0 0.167 0.167 0 0.167 0.167 0 0

AUT 0 0 0 0 0 0 0.167 0 0 0.167 0 0 0.167 0.167 0.167 0 0.167 0 0 0 0 0 0 0 0 0

HUN 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0.25 0 0 0.25 0 0 0.25 0 0 0 0 0 0

CZE 0 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0.2 0 0 0 0 0 0

ITA 0 0 0 0 0 0.25 0.25 0 0 0 0 0.25 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0

ALB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0

YUG 0 0 0 0 0 0 0 0 0 0 0 0.143 0.143 0 0.143 0.143 0 0.143 0.143 0.143 0 0 0 0 0 0

GRE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.333 0.333 0 0.333 0 0 0 0 0 0 0

BUL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.333 0.333 0 0.333 0 0 0 0 0 0

ROU 0 0 0 0 0 0 0 0 0 0 0.167 0 0.167 0.167 0 0 0.167 0 0.167 0 0.167 0 0 0 0 0

RUS 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0.2 0 0.2 0.2 0 0.2 0

EST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0.5 0 0 0

LAT 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0.25 0.25 0 0.25 0 0

LTU 0 0 0 0 0 0 0 0 0 0.333 0.333 0 0 0 0 0 0 0 0 0 0 0 0.333 0 0 0

FIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0.5

SWE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
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Appendix IV 

Bayesian Estimates of the Spatial OD Modeling of MID Initiation  

Europe, 1933-1941 

 

  
Mean S.D. 2.5% Median 97.5% Sample 

       
p_d 0.2148 0.0765 0.0693 0.2140 0.3668 50000 

p_o -0.0915 0.0958 -0.2865 -0.0898 0.0923 50000 

p_w -0.2626 0.1202 -0.4875 -0.2685 -0.0091 50000 

intcpt. -1.3138 0.2128 -1.7389 -1.3118 -0.9044 50000 

polity1 0.0001 0.0102 -0.0197 0.0000 0.0203 50000 

polity2 -0.0096 0.0113 -0.0319 -0.0096 0.0125 50000 

cap1 9.5507 1.9963 5.6703 9.5367 13.5138 50000 

cap2 5.1845 2.2338 0.8498 5.1693 9.6239 50000 

distance -0.0011 0.0002 -0.0016 -0.0011 -0.0007 50000 

alliance 0.0252 0.2192 -0.4095 0.0267 0.4515 50000 
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TABLE 2.1 Probit Estimates of MID Initiations, Europe, 1933-1941 

Variable Standard Probit Estimator 

Spatial OD Probit MCMC 

Sampling 

                 w/o Spatial Lags w/ Spatial Lags w/o Self-directed Dyads 

    p_d
a
 

 

1.6271*** 

 

  

(0.3076) 

 p_o
a
 

 

-0.0927 

 

  

(0.5230) 

 p_w
a
 

 

-3.3015*** 

 

  

(0.9170) 

 p_d 

  

0.2148*** 

   

(0.0765) 

p_o 

  

-0.0915 

   

(0.0958) 

p_w 

  

-0.2626** 

   

(0.1202) 

intcpt. -1.2801*** -0.8539*** -1.3138*** 

 

(0.1624) (0.2464) (0.2128) 

polity1 -0.0045 -0.0025 0.0001 

 

(0.0104) (0.0113) (0.0102) 

polity2  -0.0096 -0.0098 -0.0096 

 

(0.0103) (0.0114) (0.0113) 

cap1 14.7576*** 7.1875*** 9.5507*** 

 

(1.8614) (2.2136) (1.9963) 

cap2 4.5841** 6.9784*** 5.1845** 

 

(2.0082) (2.2348) (2.2338) 

distance -0.0009*** -0.0013*** -0.0011*** 

 

(0.0002) (0.0002) (0.0002) 

alliance 0.0533 -0.0344 0.0252 

 

(0.2204) (0.2372) (0.2192) 

N 650 650 650 

        
Significance levels: '***' indicates that p-value < 0.01, '**' indicates that 0.01 < p-value < 0.05, and '*' indicates that 0.05< p-value < 0.1. 

 Standard errors are in parentheses (except in Column 4 where standard deviations of the simulations are reported) . 

 Note: As the model specification in Bayesian modeling relies on y* instead of y, the spatial parameters are distinguished from the ones estimated  

          in the standard probit by denoting the latter as     ,     , and     .   
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TABLE 2.2  Marginal Effects from the Spatial OD Modeling  

of MID Initiations, Europe, 1933-1941 
 

 

Regressor 
Direct 

 Impacts 

Network 

 Impacts 

Total 

 Impacts 

polity -0.108% 0.003% -0.105% 

cap 2.148% -0.549% 1.599% 

        
Note: The marginal effects of polity are calculated from a unit increase; and the marginal effects of cap are based 

          on a 1% increase. 
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TABLE 2.3 

Impacts from Changing Germany's Capabilities  

on Its Likelihood of Initiation 
 

     Directed Dyads Baseline 

Impact of a 1% 

Decrease in Germany's 

Capabilities 

Impact of a 

Decrease to the 

Sample Median 

Germany → France 50.779% -4.756% -27.911% 

Germany → Soviet Union 49.857% -4.893% -28.326% 

Germany → Poland 46.821% -4.794% -27.082% 

Germany → Lithuania 44.983% -4.662% -26.030% 

Germany → Belgium 42.719% -4.535% -24.920% 

Germany → Czech 40.560% -4.680% -24.960% 

Germany → Luxembourg 39.633% -4.492% -23.970% 

Germany → Austria 38.352% -4.616% -24.111% 

Germany → Netherlands 38.241% -4.292% -22.826% 

Germany → Switzerland 37.495% -4.526% -23.539% 

Germany → U.K. 30.220% -3.979% -19.614% 

Germany → Hungary 26.253% -4.025% -18.550% 

Germany → Italy 24.187% -3.839% -17.334% 

Germany → Sweden 23.552% -3.651% -16.607% 

Germany → Latvia 22.873% -3.683% -16.465% 

Germany → Yugoslavia 22.179% -3.661% -16.162% 

Germany → Finland 18.337% -3.176% -13.570% 

Germany → Estonia 17.246% -3.129% -13.049% 

Germany → Romania 16.358% -3.051% -12.526% 

Germany → Albania 15.731% -2.946% -12.049% 

Germany → Bulgaria 14.586% -2.823% -11.323% 

Germany → Ireland 12.836% -2.392% -9.719% 

Germany → Spain 8.635% -1.877% -6.960% 

Germany → Greece 7.453% -1.722% -6.147% 

Germany → Portugal 5.411% -1.302% -4.509% 

      

Mean: Germany as origin 27.81% -3.66% -17.93% 

Mean: All dyads with Germany 22.09% -2.23% -11.24% 

Mean: Whole system 10.18% -0.13% -0.60% 

      
 

    

Note: Marginal Effects are calculated based on Germany's cap value being 0.0700 for the 

          sample period. 
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Chapter 3 

DO TRADE FLOWS INTERACT IN SPACE? 

SPATIAL ORIGIN-DESTINATION MODELING OF GRAVITY 

3.1   Abstract 

Since the gravity model is widely used as an empirical tool for investigating bilateral 

trade flows, trade economists strive to improve it on two fronts: theoretical underpinnings and 

methodological soundness. Unfortunately, most empirical studies are conducted under an 

unrealistic assumption of independence among trade flows, even when a remoteness variable is 

included in the equation. By extending the spatial origin-destination (OD) techniques proposed 

by LeSage and Pace (2008), this study explores spatial interdependence among bilateral trade 

flows and proposes a spatial OD threshold Tobit as an improved estimation technique for the 

gravity model. This spatial threshold Tobit is designed to capture multiple forms of spatial 

autocorrelation embedded in “directional” trade flows while accounting for the corner solution 

where trade volumes are recorded as zero. This newly proposed model is then applied to export 

flows among 32 Asian countries in 1990. The empirical results provide evidence for the presence 

of all three types of spatial dependence: exporter-based, importer-based and exporter-to-

importer-based. After further taking into account the multifaceted spatial correlation in bilateral 

trade flows, this study finds that the effect of conventional trade variables changes in a noticeable 

way. This finding implies that gravity models of trade may produce biased estimates if they fail 

to properly address spatial dependence.  
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3.2   Introduction 

Since Tinbergen (1962)’s seminal work that introduced the gravity equation as an 

empirical specification of bilateral trade flows, the gravity model “has dominated empirical 

research in international trade” (Helpman et al., 2008, p. 442). In its basic form, the gravity 

model explains trade volumes based on the economic sizes (often measured by real GDP) of two 

trading partners and the distance separating them through a functional form analogous to 

Newton’s Law of Gravity with stochastic features. Over time, this basic model has been 

extended by including other explanatory variables to help better understand the mechanism of 

trade (e.g., border effect, McCallum, 1995) and to evaluate institutional or policy impacts on 

trade flows (e.g., preferential trade agreement and membership in WTO, Feenstra, 2004). As 

Anderson (1979, p. 106) succinctly summarizes it, “[A]pplied to a wide variety of goods and 

factors moving over regional and national borders under differing circumstances, [the gravity 

model] usually produces a good fit.” Given its strong explanatory power, along with the 

simplicity in formulation and ease of interpretation when expressed in a log-linear form, the 

gravity model has been widely viewed as a successful empirical tool for investigating trade flows 

(Anderson and van Wincoop, 2003). 

Despite its popularity in empirical studies, the gravity model has been subject to several 

criticisms and recalibrations by trade economists. In the past forty years, trade scholars have 

endeavored to buttress two aspects of the gravity model: theoretical justification and econometric 

soundness. The fact that this model was not originally derived from any received theory of trade 

economics has urged researchers to question its validity and to probe into its theoretical 

underpinnings. To develop theoretical guidance for the applications of the gravity model, trade 
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economists have set forth trade models under different assumptions regarding market 

characteristics and types of trade goods, and verified the link between the gravity model and 

various trade theories (Anderson 1979; Bergstrand, 1985, 1989; Deardorff 1988; Anderson and 

van Wincoop, 2003; Helpman et al., 2008). 

On the empirical front, several issues challenge the conventional econometric 

specification of the gravity model. First, the gravity model has usually been transformed into a 

log-linear form and then estimated with OLS due to computational convenience in empirical 

analysis. This simplicity in estimation does not come without a price. The log transformed 

dependent variable requires that all trade volumes under scrutiny be positive, because logarithm 

of zero is mathematically undefined. Hence, how to handle zero trade values has been an active 

research topic for applied trade economists. Second, heteroskedasticity has recently arisen at the 

center of the discussions on the econometric specification of the gravity model (e.g., Santos Silva 

and Tenreyro, 2006; Martin and Pham 2008). The potential for biased estimates when employing 

OLS estimation in the presence of heteroskedasticity leads to an important question: Which 

functional form of the gravity model is more appropriate, multiplicative or log-linear? 

A large volume of literature has been devoted to the aforementioned two econometric 

issues. However, an equally important but largely neglected problem with the empirical 

modeling of international trade is how to deal with the interdependence of trade flows. Though 

spatial dependence between trade flows has long been suspected (Anderson and van Wincoop, 

2003), only a very few empirical studies attempt to incorporate the spatial features of bilateral 

trade flows into the econometric specification of the gravity model. Porojan (2001) is the first to 

apply spatial econometric techniques to the gravity model and his research provides evidence for 
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the existence of spatial correlation among bilateral trade flows. Later, in responding to the 

growing interest in operationalizing “multilateral resistance” (Anderson and van Wincoop, 

2003), Behrens et al. (2012) propose an econometric specification of the gravity model which is 

akin to spatial econometric modeling in structure. Notwithstanding the structural resemblance, 

the authors emphasize that their model is motivated by the theory-driven “multilateral resistance” 

terms rather than by an urge to directly model the spatial patterns of trade data. Admittedly, the 

notion of “multilateral resistance” perceives trade flows as interdependent. Moreover, 

recognizing the empirical difficulty arising from a lack of reliable data on price indices, which 

reflect multilateral resistance to trade and hence are expected to exhibit spatial dependence, 

LeSage and Pace (2009, p. 217) suggest the inclusion of spatial lags of the dependent variable to 

accommodate spatially dependent, unobserved variables, and provide further motivation for 

spatial modeling of international trade. All in all, these researches shed light on the significance 

of taking spatial dependence into account in applied international trade studies. 

The methodological contribution of this study addresses modeling dependent variables 

that combine three empirically relevant, nonstandard statistical features: censored, dyadic, and 

spatially correlated data. By extending the recent advances of spatial econometrics in modeling 

spatial autocorrelation for data featuring origin-destination flows (see LeSage and Pace, 2008, 

2009), this study proposes a spatial origin-destination (OD) threshold Tobit model to allow a 

censored and directed dyadic dependent variable, of which trade data represents a typical 

example. This newly proposed methodology is applied to a cross-section of bilateral export flows 

to concurrently deal with the potential multiple sources of spatial dependence in trade data as 

well as the problem of zero trade values. Since maximum likelihood estimation becomes 

infeasible in this case, this study develops a Bayesian procedure to estimate the model. 
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The empirical results of this study provide support for exporter-based (origin-based), 

importer-based (destination-based), as well as exporter-to-importer-based (origin-to-destination-

based) spatial correlation in export flows. Economic sizes and geographical distance are 

statistically meaningful determinants of trade flows, although magnitudes of their impacts are not 

close to unity after taking spatial dependence into account. Besides, sizable network effects are 

detected for GDP, the omission of which obscures the mechanism through which economic sizes 

affect trade flows. 

The rest of the study is organized as follows. Section 3.3 reviews the main theoretical 

developments of the gravity model and the technical issues involved in the econometric 

specification of the model. Section 3.4 discusses the technical difficulties in applying the spatial 

origin-destination (OD) model to censored data and introduces a spatial OD threshold gravity 

model. Section 3.5 presents a Bayesian procedure for model estimation. In section 3.6, the 

proposed spatial OD threshold gravity model is applied to examine bilateral trade flows among 

32 Asian countries in the year of 1990, and the empirical results are discussed. Section 3.7 

concludes. 

3.3   Theoretical and Methodological Developments of the Gravity Model 

3.3.1   Theoretical Contributions to the Legitimacy of the Gravity Model 

As the earliest applications of the gravity equation to international trade were not derived 

from formal theoretical modeling, the validity of this model was often questioned (e.g., Polak, 

1996).  Since the early 1980s, efforts have been made towards the development of theoretical 
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underpinnings for the gravity model and as a result, theory-bounded studies have demonstrated 

that the gravity equation can be derived from very different trade frameworks (Deardorff 1989).  

Anderson (1979) was the first researcher to develop a theory-guided gravity model. 

Assuming product differentiation by country of origin and employing distance as a proxy for 

transport costs, he derived the gravity equation based on a demand function with Constant 

Elasticity of Substitution (CES). Applying the same preferences, Bergstrand (1985, p. 474) 

demonstrated that the gravity equation can be derived as “a reduced form from a partial 

equilibrium subsystem of a general equilibrium model.” Bergstrand (1989) advanced the 

microeconomic foundations for the gravity equation with the additional assumption of 

monopolistic competition, although he still used existing price indexes to approximate the 

complex price terms induced by the theoretical model (p.147). Helpman and Krugman (1985) 

and Helpman (1987) found that the gravity equation is consistent with trade theories based on 

imperfect competition. Deardorff (1998) reconciled the gravity equation with a classical theory 

of trade — the Heckscher-Ohlin framework, showing how the equation can be motivated from a 

factor endowment model.  

Built upon Anderson (1979), Anderson and van Wincoop (2003) refined the theoretical 

derivation of the gravity model and highlighted the need to account for the endogeneity of prices, 

embodied in the multilateral resistance terms for exporting and importing regions. More recent 

theoretical explorations induce the gravity equation for models of international trade with 

heterogeneous firms (Melitz, 2003 and Helpman et al., 2008).  
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3.3.2   Econometric Issues of the Log-linear Gravity Model 

While commenting on Deardorff’s work, Bergstrand (1998, p. 23) accredited the 

fascination with the gravity equation to “the consistently strong empirical explanatory power of 

the model.” Using the log-linearized gravity model allows researchers to obtain high R
2 

values 

even in its “basic” specification where variation in trade flows is explained by GDPs of the 

country pairs in the sample and their bilateral distance (Bergstrand and Egger, 2011, p. 3). 

However, the log-linear gravity model has been criticized due to several econometric issues, 

such as zero trade values, heteroskedasticity, and spatial correlation among trade flows. 

3.3.2.1   Presence of Zero Trade Values  

Despite its appeal of simplicity in estimation, the log-linear form of the gravity model 

imposes the additional restriction that sampled trade data can have only positive values in order 

for the log-transformed dependent variable to be well defined. This restriction excludes zero-

valued observations from estimation, obviously overlooking the fact that some country pairs do 

not trade with each other due to economic and/or geographical reasons. In this case, zero 

observations are not the result of rounding or recording errors and thus should be included in the 

estimation. In fact, zero trade flows are not uncommon. Noted as early as Linnemann (1966), 

half of the world’s bilateral trade flows are zeros. Santos Silva and Tenreyro (2006) have 48% of 

their observations recorded as zeros while Helpman et al. (2008, p. 442) observe that “about half 

of the country pairs [in their sample] do not trade with one another.”  

Moreover, recent theoretical developments in trade literature rationalize the presence of 

zero trade flows in their theoretical models. Haveman and Hummels (2004, p. 213) derive the 
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gravity equation based on an assumption of incomplete specialization that permits the 

occurrences of zero values in trade data, “a fact that is difficult to reconcile with the complete 

specialization framework used to derive gravity equations.” Helpman et al. (2008) develops a 

gravity model that takes into account firm heterogeneity and fixed costs. Their model predicts 

zero trade volume between two countries when “no firm in country i finds it profitable to export 

to country j” (p. 451) and therefore accounts for the self-selection of firms into the export 

markets. Hence, appropriately handling observations of zero trade volumes has emerged as an 

important empirical issue for trade economists. 

Several strategies have been suggested in empirical analysis of bilateral trade to cope 

with the “zero problem”. While some are proposed on an ad hoc basis, others are more theory 

motivated. The most commonly used approaches are either to drop all zero observations (e.g., 

Baier and Bergstrand, 2007) or arbitrarily add a very small positive number to all trade flows 

(e.g., Felbermayr and Kohler, 2006; Linders and de Groot, 2006). Although both approaches are 

simple to implement, they are theoretically unjustifiable and statistically unsound. Disregarding 

zero trade flows discards information and can lead to biased estimates, especially given that 

these zero-valued observations are not randomly distributed (Helpman et al., 2008; Burger et al., 

2009). Likewise, the approach of replacing zero values with a small positive constant is less than 

advisable. The choice of the positive constant is arbitrary and regression estimates have been 

found to be sensitive to the selected constant (Flowerdew and Aitkin, 1982; Burger et al., 2009).  

Helpman et al. (2008) suggest that there is a selection process hidden in the observed 

trade data that involves two-stages. The first stage concerns the decision of trade or no trade with 

another country while the second stage determines the volume of trade once the choice of trade is 
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made in the first stage. Their theoretical reasoning is appealing; however, identification of the 

model parameters requires different sets of explanatory variables for the two separate estimation 

stages. Since it is difficult to justify a proxy for the fixed cost of exports that is not also a proxy 

for the variable cost of trade (e.g., Anderson, 2011), the selection model has been viewed as less 

straightforward to implement. 

Several studies use the standard Tobit model to estimate the gravity equation with zero 

flows (e.g., Rose, 2004; Anderson and Marcouiller, 2002). Eaton and Tamura (1994), in 

particular, put forward an innovative way to deal with zero trade volumes. In their modified 

gravity model, the volume of trade between a pair of countries records a positive value only if 

the potential trade exceeds some minimum amount. When a trade volume reaches a certain 

threshold, trading with another country becomes profitable and will thus occur. Rauch and 

Trindade (2002) follow their approach when estimating the impact of business and social 

networks on international trade. Later, Ranjan and Tobias (2007) adopt and name this method a 

threshold Tobit model. The threshold Tobit incorporates a self-selection process and zero flows 

are the outcomes of economic decision-making based on the potential profitability of engaging in 

bilateral trade. 

3.3.2.2   Heteroskedasticity  

Another extensively researched econometric issue in the empirical literature of the 

gravity model is heteroskedasticity. 

Early exploration into this issue centered around omitted variables. It is plausible that one 

country exports different quantities to two countries even though the two export markets have the 
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same GDP and are equally distanced from the exporter due to historical, cultural, ethnic, or 

political factors. If these factors are correlated with the gravity variables but not controlled for, 

OLS estimation would yield biased estimates. To alleviate this problem, researchers extend the 

basic gravity model by including such variables as common language, colonial history, and 

trading blocs (e.g., Helpman et al., 2008; Porojan, 2001). An important insight from the recent 

theoretical development of the gravity equation is that the traditional specification suffers from 

omitted variable bias because it does not consider relative prices. Anderson and van Wincoop 

(2003) illustrate that the flow of bilateral trade is not only influenced by trade obstacles at the 

bilateral level, but also by the obstacles relative to all other countries, which they term as 

“multilateral resistance”. Thus, omission of the “multilateral resistance” terms is thought to be a 

serious source of heteroskedasticity. However, since it is not easy to quantify “multilateral 

resistance”, country-specific fixed-effects are suggested as a simple alternative to represent the 

essence of these terms. 

More recently, Santos Silver and Tenreyro’s influential study (2006) revives the attention 

to the heteroskedasticity problem but in a somewhat different context. The authors point out that 

the log-linear transformation of the gravity equation tends to cause the error terms to be 

correlated with the explanatory variables and thus strongly recommend estimating the gravity 

model in its original multiplicative form with a Poisson Pseudo Maximum Likelihood (PPML) 

estimator. Their work inspires intense discussions about the appropriate estimator for the gravity 

model. Martin and Pham (2008) contend that the PPML estimator is less subject to bias if 

heteroskedasticity is the only problem, but this estimator does not appear to be robust to the joint 

problems of heteroskedasticity and zero trade flows. Moreover, as the Poisson model assumes 

equidispersion (i.e., the conditional mean and the conditional variance of the dependent variable 
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are assumed to be equal), which is argued to be too restrictive, other nonlinear estimators are 

explored (e.g., Heckman Maximum Likelihood, Martin and Pham, 2008; Zero-Inflated Negative 

Binomial, Burger et al., 2009; Gamma Pseudo Maximum Likelihood (GPML), Martinez-

Zarzoso, 2013).  

Certainly, discussions on the appropriate estimator for the gravity model have enhanced 

researchers’ awareness of the potential bias associated with the log-linear gravity formulation. 

Nonetheless, simulation studies that compare the performance of various estimators against 

different patterns of heteroskedasticity cannot set one estimator apart from the others. In many 

cases, the newly proposed estimation techniques actually produce less desirable results (e.g., 

Martin and Pham, 2008; Martinez-Zarzoso, 2013). It should also be noted that as the underlying 

data generating process is unknown, performance of the estimators can only be assessed with 

simulated data and the data simulation process, in particular the way in which zero-valued 

observations are generated could affect the performance of specific estimators (Martin and 

Pham, 2008, p. 14-15). 

3.3.2.3   Spatial Interdependence among Trade Flows 

Since Krugman (1991), trade scholars have begun to appreciate how geography matters 

to trade. However, most of the previous empirical studies of the gravity model of trade fail to 

explicitly account for the role of location (Porojan, 2001). It is reasonable to argue that trade 

flows are not isolated events, but interact with one another due to the geographical location of 

the members of trading pairs. Conventionally, a bilateral distance variable is included in the 

gravity model to proxy for trade barriers, especially trade costs; however, it is not sufficient for 

capturing spatial dependence across trade flows.  
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Using a relative distance measure distance defined as the actual distance divided by the 

average distance of the importing country from its trading partners, Polak (1996) brings up the 

idea of controlling for the location effect in the gravity model. His distance measure is in nature 

close to the use of standardized weight matrix in spatial econometric models (Porojan, 2001, p. 

277). Similarly, Hamilton and Winters (1992) call for “more differentiated measures of 

‘distance’”. Frankel and Wei (1998) echo Polak’s insight and include both the distance variable 

and an additional “remoteness indicator” (calculated as the average of a country’s distances to its 

trading partners, weighted by the partners’ income) in their model specification.  

On the other hand, Anderson and van Wincoop (2003, p. 170) critique the use of an 

“atheoretic ‘remoteness’ variable”, stressing that “the remoteness index does not capture any of 

the other trade barriers.” Based on their own theoretical reasoning of the gravity model, the 

authors advocate the inclusion of “multilateral resistance” variables in the empirical specification 

of the gravity model. The mathematical expression of the “multilateral resistance” terms 

elucidates the fact that bilateral trade depends not only on the trade barriers between a pair of 

regions but also on the average trade barriers that both regions face with all their trading 

partners, alluding to the need to control for interdependence when estimating the gravity 

equation systems. Since it is not straightforward to operationalize the notion of “multilateral 

resistance”, they suggest the use of country-specific dummies as an alternative to capture such 

correlation in empirical analysis. Some applied works choose to specify more specific forms for 

the alluded correlation in their cross-country regressions. For instance, Baier and Bergstrand 

(2009) introduce income-weighted average bilateral distance and income-weighted average 

border variables for both the exporting and importing regions to construct the unobservable 

theoretically-motivated “multilateral resistance” terms. 
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Most recently, in their derivation of the gravity model, Behrens et al. (2012) adopt a 

‘dual’ approach that hinges only on observable trade flows and accordingly propose an 

econometric specification of the gravity model that explicitly deals with “cross-sectional 

correlations among trade flows” (p. 774). The interdependence structure embedded in their 

gravity model indicates that a given trade flow depends on all other trade flows to the same 

destination. The authors purposely interpret their econometric specification as revealing cross-

sectional correlation, not spatial correlation, among bilateral trade flows. By doing so, they try to 

stress the point that the autoregressive structure is originated from their theoretical model and not 

constructed out of the econometric concern to control for spatial effects, thus providing a better 

approach to quantify the notion of “multilateral resistance” highlighted by Anderson and van 

Wincoop (2003). At the same time, they also concede that a number of other measures (e.g., 

economic distance and socio-economic distance) have been employed to define the connectivity 

structure in spatial econometrics. In that sense, the formulation of their empirical model de facto 

attests to the presence of spatial effect in trade data. Their “interaction matrix” relates the trade 

flow     from region i to j to all the trade flows from the other regions k to region j (p. 779). 

Essentially this matrix reflects an origin-based type of dependence, one of the three potential 

forms of dependence among flow data explored in LeSage and Pace (2008)’s spatial origin-

destination model. 

Overall, it appears that most empirical gravity models implicitly assume independence. 

Of the few studies that do allow for interdependence among trade flows, interdependence tends 

to be construed only in the narrow sense of relative trade barriers. Trade scholars rarely pay close 

attention to the potential spatial correlation among bilateral trade flows that is induced by 

geographical/spatial location, though spatial effects, including spatial spillovers, have been more 
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carefully investigated and documented in other issue areas such as growth and FDI (e.g., 

Weinhold, 2002; Blonigen et al., 2007). Arguably, similar spatial patterns may also exist in 

bilateral trade, since neighboring countries could have an impact on each other’s trading 

behavior as a result of geographical proximity. This may be explained by technology spillover, 

infrastructure layout, or dissemination of ideas and policy orientations. Blum and Goldfarb 

(2006) show that the gravity model even holds in the case of digital goods consumed over the 

Internet, which do not have trading costs. Their finding that Americans are more likely to visit 

websites from nearby countries, even after controlling for language, income and immigrant 

stock, suggests that the spatial correlation existing among trade flows should be more wide-

ranging than the mere manifestation of relative trade barriers. As cautioned by Anselin (1988), 

when such spatial effects are present, OLS estimator will be biased and spatial econometric 

techniques should be employed. 

3.3.2.3.1   Explicitly Modeling Spatial Effects in the Gravity Model 

Porojan (2001) takes note of the neglect of spatial effects in the international trade 

literature. Following Anselin’s (1988) advice on how to handle data in the presence of spatial 

correlation, Porojan’s research is the first to use spatial econometric models to estimate the 

gravity equation. Employing both import and export data for 15 EU member states and 7 OECD 

countries in 1995, he compares the performance of several spatial econometric specifications: the 

spatial error (SEM) model, the spatial autoregressive (SAR) model, and the spatial 

autocorrelation (SAC) model that contains spatial dependence in both the dependence variable 

and the error term with or without controlling for heteroskedasticity. The test results indicate that 

each spatial specification exhibits better model performance than OLS (p. 275). More 



www.manaraa.com

 

86 

 

importantly, after explicitly taking into account the inherent spatial effects, Porojan finds that 

“the magnitude of the estimated parameters changes considerably and, with it, the measures on 

the predicted trade flows” (p. 266), thereby calling attention to the proper handling of spatial 

dependence in trade data.
24

 

While their model specification is not motivated by spatial econometric modeling per se, 

Behrens et al. (2012) adapts spatial econometric techniques to deal with cross-sectional 

interdependence among trade flows and thus advances empirical analysis of spatial correlation in 

bilateral trade data. In their SARMA model, which includes an autoregressive term in the mean 

component of the model and a first-order moving average process for the errors, the “interaction 

matrix” that defines the autoregressive structure only takes care of exporter (origin)-based 

dependence as termed by LeSage and Pace (2008). It is reasonable to suspect that a similar 

dependency relationship may also exist among trade flows, which arises from the importing side.  

A common drawback of the previous efforts with spatial modeling is that they do not 

perceive bilateral trade in the context of a directional flow involving both an exporter (or an 

origin) and an importer (or a destination) at the same time. Rather, their model specifications 

only concern dependence between trade flows coming from a selected side of the trading pairs, 

depending on whether import or export data is examined. As these approaches fail to consider 

the latent multiple sources of spatial correlation among bilateral trade flows, they are inadequate 

in capturing the impact of spatial dependence on flows of trade. In their study, Behrens et al. 

(2012) recognize the distinctive feature of origin-destination data and ascribe the absence of 

                                                 
24

 However, it should be noted that LeSage and Pace (2012) indicate that the non-linear relationship between   and 

  in the SAR and other spatial lag models makes it inappropriate to interpret the coefficient estimates as if they 

reflect linear regression slope estimates. For correct interpretation, they propose scalar summary measures to 

calculate the direct, indirect and total effects associated with changing explanatory variables in various types of 

spatial regression models.  
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applications of spatial econometric modeling in trade literature to a lack of well-developed 

origin-destination based models in spatial econometrics (P. 774). Although they briefly refer to 

LeSage and Pace’s (2008) work on spatial econometric modeling of origin-destination flows as 

an exception, their model specification does not reflect any consideration of correlation between 

trade flows that might stem from the destination side. Furthermore, both Porojan (2001) and 

Behrens et al. (2012) treat the remaining spatial correlation in the error term. It is more desirable 

to model the spatial dependence process in the mean component of the model rather than push it 

to the disturbance term, especially when learning the specific source and impact of spatial 

correlation is informative to trade policy-making. Also, in their recent work, LeSage and Pace 

(2012) contend that the choice between the spatial autoregressive model and other types of 

spatial models, including the spatial error model and its variants, should be guided by the nature 

of spillovers. They define “global” spillovers as feedback or self-reinforcing effects and “local” 

spillovers as impacting only nearby or immediate neighbors. In this sense, international trade 

reflects “global” spillovers. Trade flows give rise to technology dissemination and economies of 

scale, which will lead to enhanced efficiencies and reduced production costs, and subsequently 

economic growth. Growth allows more trade opportunities and encourages a new round of 

diffusion of technology and economies of scale. Given the feedback effects of international 

trade, a spatial autoregressive type of model appears to be more appropriate in handling the 

spatial correlation that exists in trade flows.  

As a way to justify spatial origin-destination modeling of flow data, LeSage and Pace 

(2008) invoke Griffith and Jones (1980)’s insight: flows stemming from an origin are “enhanced 

or diminished in accordance with the propensity of emissiveness of its neighboring origin 

locations,” whereas flows into a destination are “enhanced or diminished in accordance with the 
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propensity of attractiveness of its neighboring destination locations.” This observation should 

apply to international trade which also features a directional flow from an origin (the exporting 

country) to a destination (the importing country). Specifically, the attractiveness of an importer 

could be enhanced or diminished by that of its neighboring importers while the emissiveness of 

an exporter could be enhanced or diminished by that of its nearby exporters. Such spatial 

correlation may be due to technology and innovation spillovers among exporting countries that 

are in close proximity to each other; may arise out of the adoption of similar trade policy 

orientations among exporting countries that are neighbors; may be brought about by the 

established trading infrastructure which makes it economical to access a cluster of export 

markets that are geographically close to one another; or may be better explained by the 

competition between neighboring exporting countries or importing countries.  

Hence, it will be less productive to model spatial correlation in bilateral trade flows 

without giving due consideration to the directional and dyadic features of trade data. Only by 

modeling spatial correlation in terms of the specific role assumed by each member in a trading 

pair (i.e., being in the status of an exporter or an importer), will a researcher be able to “zero in” 

the multiple sources of spatial dependence among trade flows. Accordingly, the spatial OD 

model proposed by LeSage and Pace (2008) offers a more promising solution to controlling for 

spatial effects when investigating international trade. The core idea of LeSage and Pace’s 

modeling strategy is to extend the conventional spatial autoregressive (SAR) model by 

constructing three spatial lags of the dependent variable based on three different connectivity 

structures, which are meant to capture respectively spatial dependence arising from neighboring 

relationships among origin regions, among destination regions as well as dual neighboring 

relationships between both origins and destinations across trading pairs. The use of spatial lags is 
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recommended as a more efficient way to deal with omitted variables (LeSage and Pace, 2008; 

Porojan, 2001; Behrens et al., 2012).  

It is also worth noting that both Porojan (2001) and Behrens et al. (2012) use the log-

linear formulation of the gravity model while illustrating the need to account for interdependence 

when studying trade issues. As discussed earlier, this functional form of the gravity model 

requires that all sampled trade volumes to be positive. The inability to accommodate zero trade 

flows in the estimation unfortunately limits the applicability of their models, because it is quite 

common to observe zero values in trade data. Lebreton and Roi (2009) is the first attempt to 

apply LeSage and Pace’s spatial OD modeling technique to trade data and it examines the effect 

of exchange rate volatility on import flows. By fitting the model to trade flows between 

Oceanian countries, their empirical results indicate the presence of both positive origin-based 

and destination-based dependence. However, the authors also point out a limitation that the 

spatial OD model is designed for continuous dependent variable and thus cannot handle censored 

data with zero trade values (Lebreton and Roi, 2009, p. 5). 

This study extends the spatial OD model to accommodate the limited dependent variable 

nature of bilateral trade data.
25

 The newly proposed spatial gravity model is designed to capture 

the multiple types of spatial dependence embedded in trade data while allowing for zero-valued 

flows in the sample. Thus, this model precludes the inconsistency problem suffered by OLS due 

to the presence of spatial correlation and accordingly makes full use of the trade flow data. 

                                                 
25

 As LeSage and Pace (2009) point out, gravity models have often been employed to explain OD flows which are 

“fundamentally spatial in nature”. Their spatial OD modeling extends the traditional gravity model to handle spatial 

dependence. Moreover, acknowledging the possible presence of a large number of zero flows in flow data such as 

population migration flows and international trade flows, they mention the potential of extending the spatial OD 

modeling to treat the zero flows problem. 



www.manaraa.com

 

90 

 

3.4 Model Specification 

LeSage and Pace’s (2008) spatial OD model represents a more tailored approach to 

dealing with spatial correlation in data featuring an origin-to-destination flow such as bilateral 

trade flows. However, their model specification is not readily applicable to the gravity model of 

trade if the data contain zero trade values, as their spatial OD model is proposed for continuous 

dependent variables. When zero trade flows are present in a data set, it becomes an issue of a 

limited dependent variable and it normally requires a limited dependent variable approach, such 

as a Tobit-type (spatial) model. Moreover, zero trade values pose another technical challenge 

when the log-linear form of the gravity model is employed for the sake of the computational 

ease. To handle zero trade observations and spatial autocorrelation concurrently, this study 

employs a spatial OD model in conjunction with the threshold gravity model first introduced by 

Eaton and Tamura (1994).
26

   

According to the threshold gravity model, the volume of trade between a pair of countries 

records a positive value only if the potential trade exceeds a certain minimum amount (i.e., 

threshold). As Ranjan and Tobias (2007) point out, the threshold Tobit allows us to “remain true 

to the mixed discrete-continuous nature of trade data” by “assign[ing] meaningful probabilities to 

the event of no trade” and also helps to “avoid the problem of taking the log of zero” (p. 818). 

Following Eaton and Tamura (1994)’s framework, the trade flow from country j to 

country k is modeled as: 

                                                 
26

 Applying a Bayesian procedure to the threshold gravity model proposed by Eaton and Tamura (1994), Ranjan and 

Tobias (2007) examine the impact of contract enforcement on bilateral trade flows. LeSage and Pace (2009) briefly 

mention the potential to combine their spatial Tobit model with the idea of a threshold value of trade initiated by 

Eaton and Tamura and later adopted by Ranjan and Tobias.  
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                                (   
   )          ,                                                          

where                                     {
   

          
     

           
     

        and         [      
 ] 

Or equivalently,  

                          
                                           (        )                               

                              desired trade            fixed cost            potential trade 

From an economic point of view, the threshold parameter   can be interpreted as a fixed 

or average cost of international trade,
27

 and    
  represents the desired amount of bilateral trade. 

The actual observed trade volume,     , equals    
  if the potential trade more than covers the 

fixed cost. On the contrary, if the potential trade falls below the fixed cost and bilateral trade 

becomes undesirable or unprofitable (i.e., desired trade is negative), then the observed trade 

volume     shows up as zero. That is to say, trade will occur only when trade is desired (when 

   
   ). In this sense, the practice of adding an arbitrary “1” to all sampled trade data to have 

their logged term defined is not convincing, as it imposes an arbitrary one-unit trade cost.  

Also, it is worth noting that technically speaking, the log-linear formulation of the model 

may help alleviate possible heteroskedasticity, as it is known that homoskedasticity in logs 

allows a reasonable heteroskedasticity in levels (e.g., LeSage and Thomas-Agnan, 2012). 

Using matrix notation, equation (3.1) can be rewritten as: 

                                                 
27

 Similarly, Rauch and Trindade (2002, p. 119) think of   as “an amount of ‘melting’ that occurs as soon as the trip 

starts, independent of the distance travelled.” See also Ranjan and Tobias (2007).  
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                ,                                                     

LeSage and Pace (2008)’s spatial OD model employs three spatial lag terms of the 

dependent variable defined through the weight matrices   ,   , and    to model respectively 

spatial correlation stemming from neighboring relationships among the exporting countries, 

among the importing countries, as well as concurrent neighboring relationships across trading 

pairs. The construction of weight matrices   ,   , and    is explained in detail in Chapter 2 

(also see LeSage and Pace, 2008). As explained above, the left hand side of equation (3.3) 

represents the logged value of potential trade. If spatial effects are present, they are expected to 

influence the latent trade volumes. Taking the log of the dependent variable attempts to correct 

for potential heteroskedasticity. Therefore, the spatial OD modeling of the threshold Tobit is 

specified as follows: 

                                                 

                                                                                                               

For brevity, we use    to denote             and accordingly, (3.4) can be rearranged 

as: 

                                                                                             

Setting                      , we can simplify equation (3.5): 

                                                                                                                           

or equivalently, 
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Eaton and Tamura (1994) rely on maximum likelihood for the estimation of their 

threshold Tobit model. However, once spatial lags are introduced into the model, maximum 

likelihood estimation (MLE) becomes infeasible, as explained below. Hence, this study develops 

a Bayesian estimation algorithm which properly accounts for the discrete-continuous feature of 

trade data while avoiding the computational difficulty associated with an ML estimator. 

3.4.1   Computational Difficulty with MLE  

When spatial interaction is taken into consideration, an ML estimator is not an 

appropriate choice in dealing with the involved relationships among observations. This issue 

becomes clear when we inspect the likelihood function for positive observed values of  . 

For notational convenience, in this subsection, we use the subscript “ ” to denote 

observations instead of “   ” which indicates the exporting and importing countries for each 

observation of bilateral trade volume. From expression (3.6), we get  

[ ]   
  [ ]                                                                  

where [ ]  and [ ]  designate the ith row of the   and   matrices, respectively. 

In keeping with Eaton and Tamura (1994)’s approach, by means of a Jacobian 

transformation, the likelihood function for positive    is written as              

                                                                     
    

    
 



www.manaraa.com

 

94 

 

 
    

    
 

 

         
   { 

 [ ]   
  [ ]    

   
}                                        

with      denoting the element in the ith row and column of  . 

As can be seen from (3.9), vector    includes both observed values and unobserved 

values, which would greatly increase the computational difficulty of ML estimation. 

3.4.2   A Bayesian Approach to the Spatial OD Threshold Tobit Model 

With the assumption that             , spatial interdependence induces a multivariate 

normal distribution for                as shown in (3.10). 

                                                                                 

Accordingly,                                     and     follows a shifted 

multivariate log-normal distribution with conditional prior density 

 (        
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     (  )
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Following the common practice of Bayesian analysis, this study assigns a multivariate 

normal prior for  , an inverse-gamma prior for   ,
28

 and diffuse priors for the threshold 

parameter   as well as the spatial lag parameters,   ,   , and   . Specifically, 

            ,                   

              ,              

             

              ,29
              

Given the priors described above, we can derive the conditional posterior distributions of 

model parameters as follows by applying Bayes’ Theorem: 

                                   

         { 
 

   
                    }     ( 

 

 
      )    

        { 
 

    [                    ]             [                    ]} 

which is the kernel of a multivariate normal distribution. Therefore, the conditional posterior of 

  is:     

                                                 
28

 When we let both the shape parameter and the scale parameter of an inverse-gamma distribution infinitely 

approach zero, then its density is             . 
29

 The specified upper bound for   is based on the threshold estimate obtained using Eaton and Tamura’s threshold 

Tobit model and is also compatible with the Bayesian estimation results reported in Ranjan and Tobias (2007) after 

adjusting for the differences in the measurement of trade data. Moreover, it is noteworthy that adjusting the upper 

bound of   does not much affect the spatial parameters, which indicates the robustness of spatial effects and 

therefore the need to control for spatial correlation. 
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                                        (                      (
   

      )
  

) .              

And, 
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                               (
 

 
)      { 

 

 
                    

  } 

Due to the use of a conjugate prior for   , its conditional posterior also follows an inverse-

gamma distribution: 

                                 (
 

 
  

 

 
                    ) .                                                                                  

With presumed independence among the spatial lag parameters, the posterior conditionals 

for  ’s all take the same form as (3.14): 

                                                                     

             { 
 

   
                    }                     

Here            denotes an indicator function which assumes the value of 1 if    is in the 

open interval       .
30

 As the conditional posterior distributions of  ’s do not have a standard 

                                                 
30

 This restriction is imposed both due to model assumptions (i.e.,  ’s are autoregressive parameters) and 

computational feasibility (see LeSage and Pace, 2009). LeSage and Pace further suggest imposing the stability 

restriction that  ∑                (p. 221).    
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form and thus cannot be sampled directly, this study employs a Metropolis-Hastings algorithm to 

obtain samples for  ’s. 

The conditional posterior distribution for the threshold parameter,  , is obtained as: 

                                             
 

   
        

          
    

 

                                        { 
 

   
                    }                                  

This distribution has an unknown form as well. Again a Metropolis-Hastings sampling 

scheme is used to simulate draws from (3.15).
31

 

3.4.2.1   Sampling of Latent Trade Values    

For notational convenience, we introduce         and             and express 

(3.10) as  

                                                                                        

According to the setup of the threshold Tobit model, the latent variable   
  equals 

observed trade flow    whenever the former turns out to be positive. Otherwise, the latent trade 

flow is not observed. Therefore, with a predetermined  , the vector of    is comprised of both 

known and unknown values.  

By utilizing the properties of the multivariate normal distribution, LeSage and Pace 

(2009) design an elegant way to obtain latent   
  for censored observations. To this end, trade 

                                                 
31

 Based on generated data experiments, Ranjan and Tobias (2007, p. 826) choose to sample this distribution via grid 

approximation. 
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data needs to be rearranged and then have the zero values stacked on top of the non-censored 

ones. This way, the resultant    vector encompasses two sub-vectors   
  and   , with   

  

corresponding to the    censored observations and    containing the    non-censored 

observations only. Mathematically,    (  
      

  )
 
, where   ,   

  and    are three column 

vectors with dimensions   by 1,    by 1 and    by 1, respectively; and        . 

As LeSage and Pace (2009) astutely point out, we can treat the censored observations 

contained in   
  as random variables, and construct the mean vector and covariance matrix for 

this random vector conditional on the    vector of uncensored observations. In so doing, we can 

generate latent   
 ’s from the derived distribution for the random vector   

 . Specifically, the 

conditional posterior distribution for the    censored observations can be expressed as a 

multivariate truncated normal distribution   
           

       
   subject to the constraints that 

  
           

, drawing upon the fact that   
  and    are the two partitioned vectors of a 

multivariate normal.  

Analogous to the partitioning of the multivariate normal    into two sub-vectors   
  and 

  , the mean vector and covariance matrix of    are correspondingly partitioned as   [
  

  
] 

with sizes [
  

  
] and   [

      

      
] with sizes [

          

          
]. Furthermore, the 

conditional distribution of   
  given    is a (  -variate) multivariate normal with the mean vector 

and covariance matrix defined as follows: 
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With the precision matrix                  , Pace and LeSage (2007) point out 

that by applying Corollary 8.5.12 in Harville (1997), the mean vector of   
   can be rewritten as 

  
         

              

to save computational time. 

Given (3.17) and (3.18), we have 

    (  
       

)    
           

      
           s.t.     

           
                             

where    
 is a column vector of ones with    elements. 

To generate the random vector   
 , this study turns to the Geweke-Hajivassiliou-Keane 

(GHK) multivariate normal simulator (Geweke, 1991; Hajivassiliou, 1990; and Keane, 1994), a 

technique that samples recursively from truncated univariate normals after a Cholesky 

transformation. The GHK algorithm is described below.  

First, draw a random vector 

                      s.t.         
              

   
     

where   denotes the lower triangular Cholesky factor of    
 ,        

 . 

Due to the triangular structure of  , the restrictions on   are recursive. To be exact, 

                s.t.       
           

      ,   

               s.t.       
                   

             , 
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and for        , 

                s.t.       
  ∑    

   
                 

  ∑    
   
           . 

Thus    can be sampled sequentially from univariate truncated normals. The simulated vector   

and the relation   
     

     will give the desired truncated random vector   
 .       

By transforming the equation   (  
       

)    
 , we can solve for   

  and obtain 

  
        

        
       

           
 

in order to simulate values of    corresponding to observed zero trade flows. 

3.4.2.2   Bayesian Simulation Procedure for the Spatial Threshold Tobit Model 

This study fits the spatial OD threshold Tobit model using a Gibbs sampler, which 

sequentially samples the conditional distributions of the model parameters following the steps 

sketched below: 

1.  ( |      
   

   
   

   
   

   
           ), which is a multivariate normal distribution 

with mean and variance defined in (3.12). Label the sampled vector   as     . 

2.  (  |        
       

       
               ), which has an inverse-gamma distribution with 

the shape and scale parameters specified in (3.13). Label this sampled    as       
. 

3.  (  | 
          

   
       

               ), which can be acquired by means of a 

Metropolis-Hastings sampler based on a normal jumping density, along with rejection 

sampling in order to confine    to the        interval. Label this updated value   
   

. 
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4.  (  | 
         

   
      

               ), which applies the same Metropolis-Hastings 

algorithm as in step (3). The newly updated value for    is used when making a draw for 

  . 

5.  (  |           
   

      
               ), which is similar to steps (3) and (4), except 

that now the updated values for both    and    are employed. 

6.  ( |           
   

      
       

      
   

), which also takes a Metropolis-Hastings 

substep along with rejection sampling to simulate draws limited to the interval      . 

7. Sampled values for the latent   
  can be obtained through a transformation of the draws 

generated from the right-truncated multivariate normal   
 , as described in Section 

3.4.2.1. 

This process is repeated to collect a large sample of simulated values that can be used to make 

valid inferences with respect to the model parameters. 

3.5 Data, Construction of Weight Matrices, and Effects Estimates 

3.5.1   The Data 

To illustrate the spatial effects among bilateral trade flows, this study employs the basic 

setup of the gravity equation and fits the spatial OD threshold Tobit to a sample of 32 Asian 

countries in 1990 (see Appendix I). The explanatory variables,  , include real GDP of the two 

economies in a pair, the distance within each pair, as well as a contiguity dummy.
32

 The 

dependent variable is bilateral exports. Data on export volumes, GDP, and bilateral distance are 

                                                 
32

 The explanatory variables are all log transformed except the contiguity variable. 
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collected from Santos Silva and Tenreyro (2006)’s dataset.
33

 In the original data, trade volumes 

are measured in thousands of US dollars and GDP in level term. For computational 

manageability, this study records export volumes in billions of US dollars and GDP in millions 

of US dollars.  

When a contiguity variable is included in Santos Silva and Tenreyro’s dataset, it is based 

only on land borders. This operationalization may be too restrictive because if two countries are 

separated only by a small body of water, they are de facto neighbors. For this reason, this study 

adopts a broader definition of contiguity which acknowledges not only a land border, but also a 

water border. The contiguity data are retrieved from the Expected Utility Generation and Data 

Management Program (EUGene) <http://www.eugenesoftware.org/> Version 3.204, which 

allows the user to choose from several different distances of water body under which two 

countries are to be considered as contiguous. This study uses a more conservative separation 

distance of less than 25 miles of water body as an alternative criterion for determining contiguity.  

3.5.2  Handling Weight Matrices 

3.5.2.1  Choice of the Weight Matrices 

In spatial analysis, the weight matrices are used to capture the inherent spatial correlation 

in the data. Therefore, these matrices should be constructed in view of the characteristics of the 

data under study to make them more relevant to the embedded spatial patterns. 

                                                 
33

 Santos Silva and Tenreyro post their data and definition of variables at 

http://privatewww.essex.ac.uk/~jmcss/LGW.html. It needs to be noted that when comparing different estimators 

using the Anderson-van Wincoop (2003) gravity model, which controls for multilateral resistance by including 

exporter- and importer-specific effects, Santos Silva and Tenreyro (2006) do not use countries’ GDPs as explanatory 

variables as only bilateral variables can be identified given the cross-sectional data employed. 
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Porojan (2001, p. 271) utilizes a contiguity weight matrix wherein countries that share a 

land border or separated by a small body of water are coded as contiguous. This choice is better 

than using a predetermined capital distance as the cutoff for denoting neighbors, especially for 

trade participants with a large territory, such as China and Russia, which might require the cutoff 

distance to be quite large in order to capture possible spatial interactions. On the other hand, 

Porojan’s weight matrix does not reflect the dyadic and directional features of flow data by 

differentiating the sources of spatial correlation. 

As pointed out by Behrens et al. (2012), the weight matrix may be defined in different 

ways. Behrens et al.’s weight matrix is called the “interaction matrix” to be distinguished from 

the more common, distance-based formulation, because it assigns weights based on the 

population ratio of the exporting country in a trading pair to the total population of countries in 

the sample. However, this way of defining the interdependence structure of trade flows is not 

compelling, because it rigidly sets the influence of one trade flow invariable with respect to all 

other relevant trade flows. For example, if two trading pairs share the same importing country 

and have a similar population size in the respective exporting country (i.e., same ratio to the total 

population of the sample) but are differentiated by the bilateral distance within each pair, then all 

other bilateral trade flows involving the same importing country are supposed to exert the exactly 

same effect on the trade volumes of the stated two pairs according to their interaction matrix. 

Further, though Behrens et al. acknowledge that trade data features an origin-to-destination flow, 

their model is incapable of handling the complex connectivity structure embodied in such 

directional flows. 
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It can be argued that geographical distance matters to trade behavior in different ways. 

Admittedly, transportation cost is an important factor when countries decide with whom to trade. 

Yet, it is important to note that physical proximity allows countries to benefit from the spread of 

technologies, ideas, and policies, which are all conducive to the promotion of trade (e.g., 

technology spillover, LeSage et al., 2007). Therefore, this study will still rely on a first-order 

contiguity weight matrix  , where           is coded as “1” if the two members of a pair are 

contiguous and coded as “0” otherwise. A row-standardized weight matrix   based on the stated 

definition of contiguity is included in Appendix II. This   matrix is then adapted to the 

neighboring relationships unique to OD flows to build the three spatial weight matrices   ,   , 

and    as proposed by LeSage and Pace (2008) to specifically model origin-centric, 

destination-centric and origin-to-destination-centric dependence. Through Kronecker product 

operations,   , which equals   ⨂ , embodies the notion that factors causing trade flows from 

an exporting country to an importing country may induce or dampen similar flows to nearby 

importers;     ⨂   is intended to reflect origin-based dependence wherein a country’s 

exporting behavior may simulate or impede similar flows of trade from its neighboring exporters 

to the same destination; and     ⨂  represents a second-order connectivity between the 

neighborhood of an exporting country and the neighborhood of an importing country.
34

 

3.5.2.2   Elimination of Self-Directed Pairs 

In keeping with the structure of the weight matrix  , self-directed pairs are included in 

the data by construction. However, when the values of the dependent variable are set to zero for 

                                                 
34

 In this study, lower case   denotes the number of countries in the sample, whereas the upper case   stands for the 

total number of observations, which equals    by construction according to the spatial OD modeling set forth by 

LeSage and Pace (2008), and equals              after self-directed pairs are removed from the data using 

the elimination step proposed in the next section.  
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the self-directed pairs, it fails to distinguish the zero values for these observations from those 

observed for no-trade pairs, thus leading to biased estimation. To avoid this bias, several 

researchers include an additional set of explanatory variables to estimate a model of self-directed 

pairs in tandem with a model of bilateral flows (see LeSage and Pace, 2008).  

Behrens et al. (2012) include internal absorptions in their data; however, their 

construction of the “interaction matrix” assigns no weights to self-directed pairs (i.e., own trade 

flows), thus excluding the role of self-directed pairs from the interactive network. Santos Silva 

and Tenreyro (2006) consider only non-self-directed trade pairs in their investigation of the 

proper functional form for the gravity equation. Accordingly, it is difficult to assume that 

bilateral trade flows and internal flows operate under the same mechanism and thus need to be 

estimated jointly, especially for the cross-section considered in the application of this chapter. In 

1990, external trade volumes and internal trade flows were not on a comparable scale for many 

of the sample countries, either because they were not yet capable of participating in international 

trade or because they focused on an inward looking trade policy and international trade only 

accounted for a very small part of their national income. In this sense, it may not be necessary to 

include self-directed pairs in the model. However, to accommodate diverging perspectives, this 

study will fit the spatial OD threshold Tobit model to the data augmented with internal flows as 

an empirical exercise.
35

 The latter case does not require the elimination process that will be 

                                                 
35

 As a crude measure, this study calculates internal trade flows as the difference between GDP and trade balance as 

suggested by Lebreton and Roi (2009, p.5). To maintain data consistency, the GDP data is multiplied by external 

balance on goods and services (% of GDP) to back calculate trade balance. Data on external balance on goods and 

services (% of GDP) is retrieved from World Development Indicators (WDI) online version. For Cambodia and 

United Arab Emirates, this data is not available for the year 1990, we instead use a later year (1993 for Cambodia 

and 2001 for UAE) when this information first becomes available. Data on internal distance is taken from the 

GeoDist database compiled by Thierry Mayer and Soledad Zignago, which can be downloaded at 

http://www.cepii.fr/anglaisgraph/bdd/distances.htm. The internal distance of a country is computed as     

   √      , where country area is measured in square kilometers. 
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described momentarily, which removes the structural rigidity of the weight matrices associated 

with self-directed dyads.  

To eliminate the role of self-directed pairs from the estimation, the           th
 

rows and columns of the weight matrices need to be removed, with   denoting the number of 

countries in the sample and          . This can be accomplished by pre-multiplying each 

weight matrix by a “selection” matrix   and post-multiplying the resulting matrix by the 

transpose of  . Here   represents a        by    sparse matrix as defined in Chapter 2. The 

elimination procedure that removes self-directed pairs frees the researcher from the inadvertent 

constraints innate to the construction of spatial weight matrices. Using matrix notation, this 

process can be expressed as 

          
            

            
             ,                

where    is defined as in Section 3.4.4.   
 ,   

 , and   
  signify a renormalization of the 

modified weight matrices which exclude neighboring relationships with self-directed pairs, 

though renormalization takes place after the elimination step.   

3.5.2.3  Weight Matrices Compliant with the Restructured Data 

As explained in Section 3.4, we need to rearrange the data to stack zero-valued 

observations above non-zero ones in order to take advantage of the properties of a multivariate 

normal distribution and thus derive the conditional density of latent   
  given   . This data 

restructuring necessitates additional operations on the abovementioned modified weight 

matrices,  
 ,   

 , and   
  so as to keep the inherent connectivity structure intact. However, this 

procedure is more data-specific, depending on the positions of zero observations in the data.  
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Let [ ]  represent the rows of an   by   identity matrix   with the row numbers,  , 

corresponding to the positions of zero observations in the data that already have self-directed 

pairs removed. Then place the block of [ ]  above the remaining rows of  , denoted as [ ]  , to 

create a new matrix  . That is   ([ ] 
 
  [ ]  

 
 )

 
. Pre-multiplying each of the matrices, 

  
 ,   

 , and   
 , by   and then post-multiplying each by the transpose of   will produce 

revised weight matrices that comply with the restructured data (i.e., zero values placed on top of 

non-zero observations). Hence, the new model is given by  

                        
      [      ]         

      [      ]       

                                     
      [      ]                                              

Given that   is an orthogonal matrix, (3.21) can be simplified as:
36

       

                        
                 

               

                                                 
                                                                 

3.5.3   Marginal Effects in Spatial OD Tobit Models 

It is not straightforward to interpret the estimated coefficients of a Tobit model due to its 

inherent nonlinearity. The spatial autoregressive structure of the spatial OD threshold Tobit 

model further complicates the interpretation. Using marginal effects, which are partial 

derivatives reflecting how changes in an explanatory variable affect the expected value of   , is 

considered to be useful. As in other spatial OD models, the origin-centric ordering of the 

                                                 
36

 Since   is a square matrix with orthonormal column (and row) vectors, we know   is orthogonal and     
      . 
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variables in a spatial OD Tobit implies that for non-bilateral regressors (e.g., GDP in this 

application), marginal effects should be calculated as country-specific rather than dyad (or 

observation)-specific, because a change in one country’s regressor immediately affects all dyads 

in which that country is either an origin or a destination and then the effects are propagated 

through the spatial spillover mechanism to other dyads. 

Given that coefficient estimates of a conventional regression model are interpreted as 

averaging over impacts on all observations arising from changes in explanatory variables, 

LeSage and Thomas-Agnan (2012) propose the use of scalar summary measures which can 

provide interpretation of spatial autoregressive interaction models in a consistent manner. By 

averaging over the relevant marginal effects associated with changing a given characteristic for 

all regions,          , these scalar summaries allow the calculation of direct effects – i.e., 

origin and destination effects arising from changing a typical country’s regressor on pairs 

involving that country, distinguished by the origin or destination status of the said country in 

those pairs, network (indirect) effects – i.e., the effects on pairs not involving the said country, as 

well as intraregional effects on self-directed pairs. Total effects are the sum of these four types of 

effects.  

In matrix notation, the partial derivatives measuring total effects on the latent variable 

(represented by the flow matrix   ) from changing   
  (region           and characteristic 

         ) are given by  

           

(

 

      
 ⁄

      
 ⁄

 
      

 ⁄ )

                       

(

 

     
       

 

     
       

 

 
     

       
 )
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where     is an     matrix of zeros with the ith row adjusted to be a vector of ones, and     is 

an     zero matrix with the ith column replaced by a vector of ones. A scalar summary 

measuring the total effects of a change in the typical region’s kth characteristic can be obtained 

by averaging across all the elements of the     matrix TE in (3.23) and thus takes the form: 

      ⁄    
          

A scalar summary of the destination effects can be calculated by averaging across the 

elements in the matrix TE that correspond to the partial derivatives for pairs in which the country 

with changed characteristic is the destination. Mathematically, this scalar measure can be 

expressed as       ⁄    
       , where    is an     matrix that retains the [       

  ]th rows (         ) of TE matrix while having the remaining rows set to zero. 

Similarly, a scalar summary of the origin effects can be constructed by averaging across 

the elements in the matrix TE which correspond to the partial derivatives for pairs in which the 

country with changed characteristic is the origin. This can be expressed as       ⁄    
     

  , where    is an     matrix that retains the [(         )     ] elements of TE (i.e., 

the rth n elements of the rth column of the matrix TE with          ) while setting the 

remaining elements to zero. 

Further, a scalar summary of the intraregional effects can be created using    

   ⁄    
       , with    being an     zero matrix adjusted to pass over, in the 

corresponding row and column positions, the elements of the matrix TE that represent partial 

derivatives for self-directed pairs. 
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Consequently a scalar summary for the network effects can be obtained using       

          

In order to interpret the newly proposed spatial OD threshold Tobit model, this study 

adopts LeSage and Thomas-Agnan’s approach with a modification that sets the intraregional 

effects to ‘zero’ when internal flows are not included in the model estimation. Not surprisingly, 

the nonlinear nature of Tobit means that the   
  and   

  in (3.23) should be replaced by 

derivatives which are no longer constant scalars as would be the case of a linear regression 

model. Instead, they are two     matrices with varying elements depending on the specific 

values of explanatory variables observed for each OD flow. This study uses bold letters to 

distinguish them from the coefficient estimates. By organizing the column vector    into an 

    origin-centric matrix  , we write,
37

  

  
   (

     

 
)    

    (
     

 
)  ( 

  
 

 
)    

and 

  
   (

     

 
)    

    (
     

 
)  ( 

  
 

 
)                                   

where   stands for an     matrix of ones,   represents the censoring point, and   designates 

an     diagonal matrix with the diagonals set equal to the square root of the diagonals in the 

covariance matrix   defined in (3.16). 

                                                 
37

 To comply with the origin-centric ordering, the diagonal elements of the matrix   in this application are set to 

zero as place holders, since we do not consider sample countries’ internal trade flows. And subsequently the 

diagonals of   
  and   

  are replaced by zeros to reflect the exclusion of interregional flows. 
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3.6 Empirical Results and Interpretation 

Following the algorithm described in Section 3.4.2.2, this study runs 35,000 iterations. 

Inspection of the trace plots for all model parameters indicates quick convergence to a steady 

state. Thus this research uses a burn-in period of 5,000 iterations and draws inferences based on 

the remaining 30,000 iterations. As with the conventional practice in Bayesian analysis, a 95% 

credibility interval together with posterior mean and standard deviation that are associated with 

each model parameter are reported in TABLE 3.1.  

TABLE 3.2 displays the results of several other techniques commonly used for the 

estimation of the gravity equation alongside those from the spatial OD threshold Tobit.
38

 Column 

1 presents the OLS estimates using the logarithm of exports as the dependent variable. As noted 

earlier, this requires dropping all the observations of zero bilateral trade flow. Only 612 country 

pairs, or 61.7% of the current sample, record positive export flows. Column 2 shows the OLS 

estimates with          being the dependent variable, and in Column 3, OLS results are 

presented using               as the dependent variable, where the added positive constant is 

opted in light of the threshold estimate from the threshold Tobit model (see Column 5). Column 

4 exhibits results of standard Tobit and Column 5 lists threshold Tobit estimates based on Eaton 

and Tamura (1994). The spatial OD threshold Tobit results are presented in Column 6 in a 

compatible format.  

The signs of all of the parameter estimates are remarkably stable across all models except 

for the contiguity variable, which seems not substantially different from zero in these models. 

                                                 
38

 For non-Bayesian estimations, a 95% confidence interval is reported in parentheses below each point estimate, 

while for the Bayesian estimation a 95% credible interval is presented. 
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Inspecting the first three columns, we find that different approaches to log transforming the 

dependent variable lead to noticeable changes in OLS estimates. As shown in Column 1, the 

coefficients for exporter’s GDP and distance are almost equal to positive one and negative one, 

respectively, while the GDP coefficient for importer is also on a comparable scale. However, 

these results are obtained using positive export flows only. When the zero observations are 

included for estimation, the magnitude of conventional trade variables decreases noticeably. As 

illustrated in Column 3, when we set the added positive constant (i.e., fix the threshold 

parameter) to be 0.0049, the sizes of the two income elasticities decrease by more than half, with 

exporter income-elasticity declining from 0.9970 to 0.4404 and importer income-elasticity 

decreasing from 0.8813 to 0.4013. As for the distance parameter, its magnitude changes from -

1.0081 to -0.2006. Further, when an arbitrary constant of “1” is added to the export flow data 

before log transforming them as in some previous trade studies, the sizes of all parameters except 

for contiguity decrease to about one twentieth of those estimated only with positive 

observations.
39

 It is interesting to note that once a threshold parameter is included, the sign of the 

coefficient on contiguity changes from negative to positive as shown in Columns 5 and 6 as 

compared to the others, which is consistent with what trade theory on bilateral trade costs would 

predict, though this coefficient seems not significantly different from zero in almost all the 

models. Also, it is quite consistent across these models that the magnitude of coefficient on 

exporter’s income turns out to be larger than that of importer’s, though this coefficient estimate 

itself is not directly comparable across the models, which we will discuss further a bit later. 

                                                 
39

 Although in this case, the value “1” is quite large given that export flows are measured in billions of US dollars, 

this exercise illustrates that the choice of the positive constant to be added to trade data in order to make use of the 

log-linearized gravity equation does affect the estimation results and therefore should not be made on an ad hoc 

basis. For instance, Behrens et al. (2012) augment zero trade flows by adding 1, which might have  exerted an 

unduly impact on their estimates given that the Canada-US exports dataset is measured in million US dollars for the 

year 1993. 
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Estimates from the spatial OD threshold Tobit suggest that bilateral trade flows are 

indeed correlated in space and the interdependence among export flows arises from multiple 

sources. Specifically, none of the 95% credible intervals for the spatial coefficients contains the 

value zero, with    and    both showing a positive sign whereas    turning out to be negative. 

The positive sign of    suggests that when a country exports to another country, it is likely to 

export to the neighbors of its destination as well. This spillover effect may be partly due to 

potential economies of scale. Exporting to countries that are clustered geographically allows an 

exporter to take advantage of the established trade route and existing infrastructures geared to 

export activities. On the demand side, countries that are located in close geographic proximity, 

especially those of a smaller size, are predisposed to possess a similar endowment of resources, 

which may lead them to import the same types of goods. A positive    signals that one country’s 

exports to a given destination tend to be positively related to the trade volumes from its 

neighboring countries to the same importer, alluding to a different type of spillover effect. This 

resemblance in trading behavior among exporters who are geographically proximate may be 

attributable to the easiness of the dissemination of technologies and innovations, relocation of 

skilled labor, and even policy imitation to occur among neighboring countries. In this sense, 

proximity appears to provide trade-promoting opportunities rather than create market 

competition. Moreover, similarities in resource endowment among neighboring exporting 

countries may lead them to specialize in the production of same or similar types of goods.  

On the other hand, the negative sign of    indicates a competitive relationship across 

trading pairs when a ‘dual’ neighboring relationship exists both at the origins and the 

destinations. When both exporter countries are eyeing the same export markets while both 

importer countries are looking to the same suppliers, stronger trade ties within one pair may 
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cause concerns on the part of the other exporter (or importer) about disadvantaged trade position 

with the importer (or exporter) in the said pair. In the context of concurrent neighboring 

relationships across two pairs between both exporters and importers, this competition is likely to 

induce a negative impact on the trade flows within the other pair of traders. 

The estimate of the threshold parameter is around 0.0049 and zero falls outside the 95% 

credible intervals. This implies that on average, the potential trade volumes need to be at least 

4.9 million for an exporter country to be willing (i.e., for it to be profitable) to carry out trade 

transactions. 

It appears that geographical distance negatively affects trade volumes. Its coefficient 

estimate from the spatial OD threshold Tobit is -0.1842. However, this estimate is quite different 

from the ones obtained under the standard OLS and Tobit models (columns 1 and 4), which are 

very close to unity, being -1.0081 and -1.0079, respectively. It is also slightly smaller than the 

distance coefficient produced by Eaton and Tamura’s threshold Tobit. This is consistent with 

LeSage and Thomas-Agnan (2012)’s observation that diminished importance of distance after 

accounting for spatial dependence “often occurs for the spatial variants of gravity models” (p. 

23). In a similar vein, Fotheringham and Webber (1980) note that in the presence of spatial 

autocorrelation, the estimated parameter on the distance variable captures both “a ‘true’ friction 

of distance effect” and a measure of the map pattern (p. 34). Joining their insight, Porojan (2001, 

p. 275) further explicates that the spatial lag in his model captures an important part of the spatial 

effect, which the traditional formulation of the gravity model partially picked up through the 

distance variable. Since spatial origin-destination modeling is better tailored to flow data in 

capturing spatial effects, it is not unexpected that the estimated impact of distance weakens.  
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Contiguity shows no discernible impact on export flows. Although the respective 

coefficient takes a positive sign for both the spatial and non-spatial threshold Tobits, zero falls 

near the center of the intervals for this coefficient in all but one models. This is consistent with 

Ranjan and Tobias (2007)’s finding. While the authors do not offer a formal explanation for the 

insignificance of the contiguity effect, they draw attention to the difference in their new model 

specification which accounts for the discrete-continuous nature of bilateral trade data (p. 830). 

More importantly, in competition with spatial terms built on contiguity relationship, a bilateral 

contiguity dummy may prove inadequate in distinguishing the involved effects of contiguity on 

trade flows.  

Whether the spatial OD threshold Tobit model is estimated with or without the 

observations on internal trade flows (i.e., columns 6 and 7), the estimation results are quite 

consistent in terms of the sign and significance of coefficients. It should be noted that according 

to the design of spatial weight matrix  , all diagonal elements (i.e., weights assigned to intra-

regional flows or in this application, internal flows) are set to zero. This structure is transferred to 

  ,    and   , leading to different treatment of neighboring relationships with self-directed 

pairs and non-self-directed pairs. Thus it is not surprising that the inclusion of own trade flows 

may attenuate spatial effects. Nonetheless, positive exporter- and importer-based dependence 

still emerge for this extended data, though the magnitude of the coefficient estimates turns out to 

be smaller. Besides, the coefficient size on distance increases as expected. Compared to bilateral 

trade flows, internal flows record much larger trade volumes but occur within relatively shorter 

distances, tilting towards a resisting effect of distance on trade. Moreover, both GDP coefficients 

are estimated to be larger with the addition of internal flow data, which is unsurprising given that 

internal flows account for a much higher proportion of GDP.  
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As LeSage and Thomas-Agnan (2012) correctly point out, estimates for non-bilateral 

variables in spatial OD models (i.e., exporter-GDP and importer-GDP in the current application) 

are not directly comparable to those from OLS. Hence, it is more appropriate to calculate scalar 

summary effect estimates that reflect marginal effects associated with changes in regional 

characteristics on average flows so as to provide interpretation in a fashion consistent with that 

of conventional linear regression models. TABLE 3.3 shows summary effect estimates of GDP for 

the spatial OD threshold Tobit model. The first column displays the (averaged) marginal effects 

on the latent   
 , while the second column presents the (averaged) marginal effects on   . The 

scalar summary estimates for the latent and observed regressands turn out to be similar. As far as 

the effect estimates for    are concerned, a one percent increase in GDP of the typical exporter 

(i.e., origin) country is likely to lead to a 0.5941 percent increase in export flows, while a one 

percent increase in GDP of the typical importer (i.e., destination) country is likely to lead to a 

0.3351 percent increase in export flows. These results imply that the impact of exporter’s GDP is 

larger than that of importer’s GDP. The network effects are also estimated to be positive, 

suggesting that a one percent increase in the GDP of the typical country is likely to lead to a 

0.2190 percent increase in export flows due to spatial spillover (separately from the flows that 

are already captured by the origin and destination effects). In this example, total effects reflect 

the sum of the origin, destination and network effects on trade flows. The total effects of 

increasing GDP by one percent are a 1.1482 increase in export flows. 

As an exploratory step, TABLE 3.4 compares the marginal effects of GDP for the latent 

variable    in the spatial Tobit as well as for the three OLS models considered in this study. This 

comparison purports to address the question of whether the different coefficients in these models 
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are compensated by the different  ’s to produce similar marginal effects. For illustration, we 

focus on the application that considers bilateral flows only (i.e., columns 1-6),  

For models with no spatial correlation (i.e., the first three columns), the origin effects and 

destination effects are the same as the coefficient estimates for exporter-GDP and importer-GDP 

and the network effects are all zeros. As shown in TABLE 3.4, the marginal effects from these 

different models are very dissimilar, though all four types of summary measures consistently 

identify positive impacts of GDP on export flows across these models as expected. This implies 

that the different impacts estimated of GDP by the spatial OD threshold model are not statistical 

artifacts emerging from the choice of  . By allowing for spatial correlation, the spatial OD 

threshold Tobit detects sizeable network effects, which are estimated to be 0.1993 when the 

effects on the latent variable are examined. The asymmetric income impacts between exporter 

and importer are more distinct under the spatial model, with the origin effects (0.5180) standing 

about 1.8 times the magnitude of the destination effects (0.2877). Nonetheless, both the origin 

and destination effects are quite smaller than unity, revealing a much reduced influence of GDPs 

on export volumes once spatial dependence is appropriately controlled for. This result should not 

be surprising. In fact, several previous studies discuss this issue. For instance, Grossman (1998) 

questions the unrealistic large magnitude of coefficients on GDPs. Porojan (2001) reports 

considerable changes in the size of estimated parameters when applying alternative spatial 

econometric models to both import and export data, though he does not calculate the marginal 

effects, which should provide the more appropriate interpretation given the nonlinearity 

introduced by spatial correlation. Moreover, applied trade economists have always been aware of 

potential omitted variables in the empirical specification of the gravity model. If there are 

variables left out of the model which are correlated with the GDP measures and positively affect 
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export activities, estimates of GDP coefficients will be inflated. In fact, several studies have 

recommended the use of spatial lags as a more efficient way to deal with the issue of omitted 

variables (LeSage and Pace, 2008; Behrens et al., 2012; Porojan, 2001). For instance, Behrens et 

al. (2012) argue that the use of lagged terms is “more robust to potential misspecification 

concerning the form of interdependence” (p. 775).  

3.7 The Issue of Model Fit 

As the econometric models shown in TABLE 3.2 have different assumptions for the 

underlying data distribution and are estimated using quite different techniques, it is not 

straightforward to make model comparison. Thus, this study employs several measures of model 

fit as exploratory tools, which would be helpful in evaluating how well the model represents the 

data. As noted, both the standard OLS and Tobit regression models drop observations of zero 

flows in the estimation due to the log transformation of the dependent variable. For comparison 

purposes, we focus on the spatial OD threshold Tobit and Eaton and Tamura’s threshold Tobit, 

the two models that fully utilize the sample data. 

As an equivalent to   , several pseudo    statistics have been developed for non OLS 

regression models. Efron’s pseudo    
is an extension to the “percent variance explained” 

interpretation of    in linear regressions. This measure was directed at binary-outcome models 

and writes as: 

     
∑      ̂  

  
   

∑      ̅   
   

                                                           

where  ̂  denotes model predicted probabilities. However, it could be used for continuous 

models and sometimes is called the sum of squares   . It should be noted that neither the spatial 
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OD threshold Tobit nor the threshold Tobit is estimated by minimizing variance. We employ the 

Efron’s pseudo    as an exploratory tool. 

Considering the right skewedness of our sample trade data as illustrated below in FIGURE 

3.1, the mean value (0.2599) does not reasonably represent the average export flows among the 

sample countries. Thus, we replace the sample mean with the median (0.001) in the pseudo    

statistic in (3.25). Based on this modified measure, the pseudo    is 0.139 for the spatial 

threshold Tobit and 0.127 for the non-spatial threshold Tobit. 

A more commonly used pseudo    statistic is McFadden’s likelihood-ratio index,  

     
        

 (       )
                                                                               

According to the log likelihood function for the Tobit model (Wooldridge, 2002), the log 

likelihood value for the spatial OD threshold Tobit is -1646.413 and that for the non-spatial 

threshold Tobit is -1735.047, while the log likelihood for an intercept only model is -1775.2. 

Thus the McFadden pseudo    for the threshold Tobit with and without spatial correlation are 

0.073 and 0.023, respectively. 

 With respect to the pseudo    
measures reported above, the spatial threshold Tobit 

model appears to provide a moderately better fit than the non-spatial threshold Tobit. The 

relatively small pseudo    values may be due to the estimation difficulty in accommodating 

simultaneously both the substantial numbers of zero values and the highly right skewedness of 

the data.  
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FIGURE 3.1  Distribution of the Observed Values of Export Flows 

 

In addition to comparing different models , it is also useful to check how a specific model 

performs against the data. As the spatial OD threshold Tobit is estimated using a Bayesian 

procedure, we also implement Bayesian posterior predictive checks for the model. 

For the 380 observations of zero flows, the spatial OD threshold Tobit correctly predicts 

194 cases, a classification rate of 51.05%. As for the other 612 positive observations, the spatial 

model tends to have a better predictive capability for comparatively small trade values than for 

large ones. When the six observations that have a trade volume greater than 10 (in billion US 

dollars) are excluded from the sample data, the median of the remaining data is only 0.0267 (in 

billon US dollars). For instance, based on 3,000 simulations, Figure 3.2 shows the posterior 

predictive frequency for observation 465,          . It records the export flows from China to 

Nepal, and this trade volume is close to the median value after the exclusion of those particularly 

large observations. The red vertical line in the plot represents the observed data for this trade 

pair. The data appears quite plausible under the model.  
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FIGURE 3.2  Posterior Predictive Frequency for           

 

However, the posterior predicted value for large observations tends to be too small. For 

instance, FIGURE 3.3 shows that the posterior predictions of observation 590 cluster around 

0.5227, which is quite far from the actual data            (indicated by the red vertical line). 

The discrepancy between the predicted value and the observed value gets larger when we move 

further away from the median of the data. In 256 cases of the 612 positive observations, the 

observed value is within 1.95 standard deviations of the predicted value.  
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FIGURE 3.3  Posterior Predictive Frequency for            

 

3.8 Conclusion 

Since the introduction of the gravity model by Tinbergen (1962) and Linnemann (1966), 

trade scholars have sought to advance the model in two aspects. On the one hand, trade 

economists aim to establish a close link between the gravity model and trade theories. On the 

other hand, empirical researchers deal with several important econometric issues, such as the 

handling of zero trade flows and heteroskedasticity. However, applied trade economists rarely 

tap the question of correlation among trade flows, especially in the context of geographic 

location, although spatial dependence has been more heavily studied in some other related areas 

such as growth and FDI. So far, only a very few empirical studies have attempted to explicitly 

incorporate the interdependence of bilateral trade flows into the gravity model. Yet, the methods 

they employ to model the dependence structure overlook the fact that bilateral trade data are 

dyadic in nature and characterize a directional flow from the exporter to the importer. In this 
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context, previous methods fail to adequately account for the interdependence between trade 

flows.
40

  

Recent development of spatial econometric modeling provides a useful tool for 

researchers to analyze spatial dependence in data featuring a directional flow, such as population 

migration and bilateral trade flows. This study extends the spatial origin-destination modeling set 

forth by LeSage and Pace (2008) and develops a specification of the gravity model that can both 

effectively handle the multiple forms of spatial dependence existing among bilateral trade flows 

as well as the zero trade flow problem whose presence defies the log-linear formulation of the 

gravity model. Since the proposed model introduces spatial connectivity structures that render an 

ML estimator infeasible, this study relies on a Bayesian approach for model estimation.  

When the multiple sources of spatial dependence in bilateral trade data are explicitly 

taken into account, the magnitude of the effect estimated for conventional trade variables 

changes substantially. To be specific, the traditional specification of the gravity model 

overestimates the income elasticity of both home country (i.e., exporter country in the case 

studied here) and host country (i.e., importer country in this study), as well as the trade friction 

effect of distance. Contiguity exerts no appreciable impact on bilateral trade, especially when 

measures of spatial correlation built upon contiguity are included in the model. Besides, sizable 

network effects are identified for GDP, revealing the additional channels through which 

economic size affects trade flows. 

                                                 
40

 As noted earlier, Lebreton and Roi (2009)’s online manuscript is an exception. However, as a straight application 

of LeSage and Pace’s (2008) spatial origin-destination modeling technique, this paper does not tackle zero trade 

flow problem. 
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The empirical results of this study point to the presence of all three types of spatial 

dependence which LeSage and Pace (2008) argue as plausible in data characterized by a bilateral 

directional flow. The exporter (origin)-based dependence shows a positive effect on bilateral 

trade flows, suggesting that exporters who are located close to one another geographically tend 

to export to the same markets. This positive correlation among trade flows which arises from the 

end of exporters may find its explanation in a spatial spillover of technologies, ideas and polices 

among neighboring exporting countries. Or similar resource endowments may lead nearby 

countries to specialize in the production of same exported goods. Positive importer (destination)-

based dependence implies that an exporter’s trade activities with a given importer are likely to 

bring about similar export flows to the neighbors of the importer. This spatial effect may be 

attributed to economies of scale and similarities in import demands. The third type of spatial 

dependence appears among trading pairs that are featured by a dual neighboring relationship 

both between exporters and importers. The negative effect of this exporter (origin)-to-importer 

(destination) dependence reflects a competitive link among such pairs of traders.  

Relying on spatial connectivity structures that manifest multidirectional spatial 

dependence in bilateral trade flows, the proposed spatial OD threshold Tobit allows the 

researcher to evaluate in a more balanced fashion the impact of geographic distance on trade 

flows and alleviates the estimation bias in the covariates of the gravity model due to spatial 

correlation as well as possible omitted variables. 

The contribution of this study is twofold. Methodologically, it advances an econometric 

model by considering the complexity of spatial autocorrelation embedded in “directional” trade 

flows while dealing with the corner solution where trade volumes are recorded as zero. 
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Empirically, it provides evidence that bilateral trade flows are indeed correlated in space and that 

conventional trade variables have much lesser impacts than previously reported, which actually 

work through multiple channels due to the multifaceted spatial dependence of trade flows. On 

the other hand, in fitting the sample data that contain a sizable amount of zeros as well as some 

particularly large values, the spatial OD threshold Tobit model performs slightly better than the 

non-spatial threshold Tobit model. Future research should try to improve the model by 

accounting for this problem.    

Although it is sensible to specify weight matrices based on geographic distance when 

examining the spatial correlation of bilateral trade flows, there may be other ways than 

contiguity for defining neighboring relations and thereby the weight matrix given the 

researcher’s knowledge of, or theory about, the diffusiveness of spatial interaction (e.g., LeSage 

and Pace, 2004). And of course, different designs of the weight matrix may affect estimation 

results differently.   
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Appendix V 

 

 

List of Sample Countries (Abbreviation in Parentheses) 

 

 

Bahrain (BAH) Jordan (JOR) Russian Federation (RUS) 

Bangladesh (BNG) Korea, Rep. (ROK) Saudi Arabia (SAU) 

Bhutan (BHU) Lao PDR (LAO) Singapore (SIN) 

Brunei (BRU) Lebanon (LEB) Sri Lanka (SRI) 

Cambodia (CAM) Malaysia (MAL) Syrian Arab Rep. (SYR) 

China (CHN)  Maldives (MAD) Thailand (THI) 

India (IND) Mongolia (MON) Turkey (TUR) 

Indonesia (INS) Nepal (NEP) United Arab Emirates (UAE) 

Iran (IRN) Oman (OMA) Vietnam (DRV) 

Israel (ISR) Pakistan (PAK) Yemen (YEM) 

Japan (JPN) Philippines (PHI)  
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Appendix VI 

 

First-order Contiguity Matrix   

 

 
 

RUS IRN TUR SYR LEB JOR ISR SAU YEM BAH UAE OMA CHNMON ROK JPN IND BHU PAK BNG SRI MAD NEP THI CAM LAO DRV MAL SIN BRU PHI INS SUM

RUS 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

IRN 1 0 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 7

TUR 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

SYR 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

LEB 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

JOR 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

ISR 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

SAU 0 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7

YEM 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

BAH 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

UAE 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

OMA 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

CHN 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 9

MON 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

ROK 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

JPN 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

IND 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 8

BHU 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

PAK 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

BNG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

SRI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

MAD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

NEP 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

THI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 4

CAM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 3

LAO 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 4

DRV 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 3

MAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 5

SIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 2

BRU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

PHI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 2

INS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 5
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TABLE 3.1   Bayesian Estimates of the Spatial OD Threshold Tobit Model of Export Flows, 

Asia, 1990 

 

  Mean S.D. 2.5% Median 97.5% Sample  

       intcpt. -6.7752 0.6666 -8.0859 -6.7740 -5.4725 30000 

       Log exporter's GDP 0.3286 0.0270 0.2767 0.3285 0.3816 30000 

       Log importer's GDP 0.2877 0.0268 0.2359 0.2876 0.3410 30000 

       Log distance -0.1842 0.0660 -0.3125 -0.1839 -0.0558 30000 

       Contiguity 0.0331 0.1876 -0.3324 0.0333 0.4005 30000 

       d 0.3498 0.0299 0.2905 0.3499 0.4078 30000 

       o 0.3418 0.0323 0.2793 0.3420 0.4069 30000 

       w -0.1473 0.0371 -0.2221 -0.1476 -0.0731 30000 

        0.0049 0.0001 0.0047 0.0049 0.0050 30000 


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 TABLE 3.2   Regression Estimates of the Traditional Gravity Equation 

Estimator OLS OLS OLS Tobit 

Threshold 

Tobit 

Spatial OD 

Threshold 

Tobit
a
 

Spatial OD 

Threshold 

Tobit
b
 

Dep. Var.                                                                        

  

 -0.6689 *  -10.7401* 

    
intcpt.  -15.8456 *      -15.8567 *   -15.6865 *  -6.7752 *   -8.8987 * 

 

(-18.2169,  

-13.4744) 

(-0.9225, 

-0.4153) 

(-11.8838,  

  -9.5964)  

(-18.2218,  

-13.4916)  

(-17.4427,  

-13.9303)  

(-8.10859,  

-5.4725) 

 (-10.4636,                 

-7.4026) 

Log exp-GDP         0.9970 *  0.0559 *    0.4404 *     0.9979 *     0.6473 *   0.3286 *    0.4920 * 

 

(0.9084,    

1.0856) 

(0.0477,        

0.0641) 

 (0.4030,  

  0.4778) 

(0.9095,      

1.0863)  

(0.5885,        

0.7061)  

(0.2767,       

0.3816) 

 (0.4278, 

  0.5586) 

Log imp-GDP    0.8813 * 0.0594 *   0.4013 *    0.8812 *    0.5740 *   0.2877 *    0.4638 * 

 

(0.7956,    

0.9670) 

(0.0512,   

0.0676) 

(0.3639,    

0.4387) 

(0.7957,      

0.9667)  

(0.5187,        

0.6293)  

(0.2359,       

0.3410) 

(0.4017,  

 0.5310) 

Log distance   -1.0081 *    -0.0442 *       -0.2006 *       -1.0079 *  -0.1907 *        -0.1842 *  -0.9395 * 

 

(-1.2925,  

-0.7237) 

(-0.0740, 

-0.0144) 

(-0.3351,  

 -0.0661) 

(-1.2917,  

-0.7241)  

(-0.3536,  

-0.0278)  

(-0.3125,  

-0.0558) 

(-1.0535,  

 -0.8297) 

Contiguity       -0.0982    -0.0931 *       -0.0479       -0.0967       0.1517          0.0331        -0.4162 

 

(-0.8308,  

0.6344) 

(-0.1786, 

-0.0076) 

(-0.4334,         

0.3376) 

(-0.8274,     

0.6340)  

(-0.3069,       

0.6103)  

(-0.3324,     

0.4005) 

(-0.8763, 

0.0427) 

d
     

   0.3498 *   0.1514 * 

      

(0.2905,       

0.4078) 

(0.0917,  

0.2132) 

o
     

         0.3418 *   0.1131 * 

      

(0.2793,        

0.4069) 

(0.0472,  

0.1748) 

w
     

       -0.1473 *         0.0512 

      

(-0.2221,  

-0.0731) 

(-0.0209,  

 0.1153) 


    

      0.0049 *         0.0049 *  0.0049 * 

          
(0.0033,        

0.0065)  

(0.0047,       

0.0050) 

        (0.0048, 

         0.0050) 

95% confidence intervals for OLS and ML-based estimates, and 95% credible intervals for Bayesian estimates (sample size of 30,000).  
* denotes zero not in interval. 
a
 considers bilateral trade flows only (     ), i.e., excluding self-directed pairs . 

b
 includes both bilateral and internal trade flows (      ). 



www.manaraa.com

 

135 

 

            

 

TABLE 3.3 Marginal Estimates of GDP for the Spatial OD Threshold Tobit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         

                                          

Marginal Effects on       

                            

  

Marginal Effects on   

Origin Effects 
 0.5180 0.5941 

Destination Effects 
 0.2877 0.3351 

Network Effects 
 0.1993 0.2190 

Total Effects 
 1.0050 1.1482 
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 TABLE 3.4   Effect Estimates of GDP for the OLS Models and 

for the Latent Variable in the Spatial OD Threshold Tobit 

 

Estimator OLS OLS OLS 
Spatial OD 

Threshold Tobit 

Dep. Var.                                       
      

        Origin Effects 0.9970 0.0559 0.4404  0.5180  

Destination 

Effects 
0.8813 0.0594 0.4013 

 
0.2877 

 

Network Effects 0 0 0 
 

0.1993 
 

Total Effects 1.8783 0.1153 0.8417  1.0050  

          

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

137 

 

Chapter 4 

CONCLUSION 

The potential problem of inconsistent estimates due to spatial correlation has led 

researchers to design spatial modeling for improved estimation. This dissertation further 

considers modeling spatial correlation in flow data that are recorded as binary or 

censored values. Each observation of flow data, by definition, involves an origin and a 

destination at the same time, so spatial dependence is expected to arise in flow data in a 

more complicated manner. Accordingly, three spatial lag terms are constructed to 

specifically capture spatial correlation between observations on OD flows induced by a 

neighboring relationship between origins, between destinations, as well as a dual 

neighboring relationship both at the origin and the destination. This approach is similar to 

the spatial OD modeling suggested by LeSage and Pace (2008), and the three spatial lags 

are incorporated into regression models with binary and censored dependent variables, 

respectively. However, the non-linearity of the limited dependent variable models in the 

presence of spatial lags makes an ML estimator inconsistent. To circumvent the 

inconsistent estimation, this study develops Bayesian estimation procedures for the newly 

proposed spatial models. 

In Chapter 2, a spatial OD probit model is proposed to tackle with spatial 

dependence embedded in binary flow data. By incorporating the spatial lags into the 
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latent regression model and taking advantage of the data augmentation approach of 

Bayesian analysis, I develop an estimation strategy to avoid the inconsistency problem 

associated with MLE in this context. To illustrate, the spatial OD probit is applied to a 

cross-sectional data on militarized interstate dispute initiations among European 

countries. The empirical results indicate that spatial correlation exists between conflict 

initiations, and that this correlation is more complex than that discussed in the existing 

literature. This chapter finds evidence for two types of spatial correlation: target-based 

and initiator-to-target based. The positive target-centric correlation suggests that initiators 

tend to attack the neighbors of their intended targets as well, possibly reflecting strategic 

or logistic needs. And the negative coefficient on the initiator-to-target based correlation 

signifies that a potential initiator tends to be discouraged from taking actions against its 

intended target if there is a conflict between the neighbor of the initiator and the neighbor 

of the target. This negative association between conflict initiation behaviors may have 

arisen from initiators’ desire for maintaining domestic stability or by a war-weariness 

effect. Moreover, compared to base models that do not control for spatial correlation, the 

estimated effects of explanatory variables in the spatial OD probit model change 

noticeably. For example, after considering spatial correlation, the national capabilities 

variable is found to have a larger impact on conflict initiation. Moreover, the spatial 

model is capable of detecting the spillover effects of regressors on conflict. The negative 

spillovers associated with national capabilities imply that two countries within a dyad are 

less prone to militarized dispute when both perceive an external threat due to the power 

increase of a third country. Since the proposed spatial OD probit model accounts for 



www.manaraa.com

 

139 

 

spatial correlation among directional flows measured as binary outcomes, it is 

instrumental in producing more reliable estimates of conflict-inducing factors as well as a 

better understanding of the dynamics of interstate conflict behavior. 

In Chapter 3, I design a spatial OD threshold Tobit as a way to model flow data 

that are censored. As is well-known, international trade data are often left-censored at 

zero due to the lack of trade activities and they are likely to exhibit spatial correlation 

probably as a result of technology diffusion and labor mobility. Built off of Eaton and 

Tamura’s (1994) threshold gravity model and LeSage and Pace’s spatial OD modeling 

technique, this chapter purports to address in tandem the zero problem that challenges the 

log-linear formulation of the gravity model and the multiple sources of spatial correlation 

in trade data. The use of a threshold parameter as well as assigning spatial processes to 

the latent trade variable make it possible to incorporate the spatial structures in the 

commonly employed log-linear gravity model, while allowing for the inclusion of zero-

valued observations in model estimation. In this context, the three spatial lags are meant 

to reflect exporter-centric, importer-centric, and exporter-to-importer based dependence 

among trade flows. Using data on export flows among European countries in 1990, the 

spatial OD threshold Tobit model indicates the presence of all three types of spatial 

dependence. The positive coefficient on the exporter-based dependence implies that 

exporters who are located in geographic proximity tend to export to the same markets. 

This positive correlation among export flows may be explained by a spatial spillover of 

technologies, ideas, and policy orientations among neighboring exporting countries. On 

the other hand, positive importer-based dependence denotes that trade activities with an 
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importer are likely to promote similar export flows to the neighbors of the importer due 

to economies of scale in structuring transport as well as similarities in import demands. 

Furthermore, the exporter-to-importer correlation is negative, reflecting a competitive 

link among trading pairs that feature a dual neighboring relationship both between 

exporters and importers. When taking into account the multiple types of spatial 

dependence in bilateral trade flows, the spatial OD threshold Tobit estimates moderated 

income elasticity of both exporter country and importer country. Distance still appears to 

exert a trade friction effect, and the contiguity variable no longer shows any impact on 

export flows once spatial dependence is controlled for. 

In short, this dissertation has advanced spatial OD modeling for two types of 

limited dependent variables: binary and censored. Since the spatial connectivity 

structures included in the newly proposed models consider the complexity of spatial 

correlation among observations on “directional” flows, these models are not only 

instrumental in revealing how various types of flow data interact in space, but also more 

effective in alleviating the estimation bias in the covariates of spatial interaction models 

due to spatial correlation as well as possible omitted variables.  
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